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A B S T R A C T

Achieving joint learning of Salient Object Detection (SOD) and Camouflaged Object Detection (COD)
is extremely challenging due to their distinct object characteristics, i.e., saliency and camouflage.
The only preliminary research treats them as two contradictory tasks, training models on large-
scale labeled data alternately for each task and assessing them independently. However, such task-
specific mechanisms fail to meet real-world demands for addressing unknown tasks effectively. To
address this issue, in this paper, we pioneer a task-agnostic framework to unify SOD and COD. To
this end, inspired by the agreeable nature of binary segmentation for SOD and COD, we propose a
Contrastive Distillation Paradigm (CDP) to distil the foreground from the background, facilitating
the identification of salient and camouflaged objects amidst their surroundings. To probe into the
contribution of our CDP, we design a simple yet effective contextual decoder involving the interval-
layer and global context, which achieves an inference speed of 67 fps. Besides the supervised setting,
our CDP can be seamlessly integrated into unsupervised settings, eliminating the reliance on extensive
human annotations. Experiments on public SOD and COD datasets demonstrate the superiority of our
proposed framework in both supervised and unsupervised settings, compared with existing state-of-
the-art approaches. Code is available on https://github.com/liuyi1989/Seamless-Detection.

1. Introduction
Visually Salient Object Detection (SOD) and Camou-

flaged Object Detection (COD), which are fundamental im-
age segmentation tasks in the computer vision community,
have garnered significant research attention. SOD targets
detecting attracting-attention objects that are usually stand
out from their surroundings, while COD aims to discover
objects that are usually concealed in their surroundings [33].
Due to the object characteristics of SOD and COD, they have
been embedded separately in large-scale applications, such
as SOD for adversarial defense [24, 66], and COD for traffic
classification [73] and surveillance [11].

In real-world scenarios, objects often exhibit multiple
characteristics simultaneously, such as saliency and camou-
flage. As shown in Fig. 1, a chameleon is salient when it
appear in a new scene. However, it will change its body ap-
pearance to conceal itself in the surroundings, which makes
it camouflaged. These qualities play crucial roles in various
practical applications, including autonomous driving where
detecting both salient features and camouflaged objects is
essential for safety [19, 52], and in remote sensing where
identifying saliency and camouflage aids in data analysis
[7, 6]. Despite significant advancements in separate SOD
and COD techniques, they are confined to specific tasks.
Since the object characteristics cannot be forewarned in real-
world life, the current separate SOD and COD methods will
fail in the opposite tasks. For example, it is not reasonable to
detect the chameleon in Fig. 1 using the individual salient or

∗Equally Corresponding authors

Figure 1: An easy example for the co-existing saliency and
camouflage scene. A chameleon is salient when it appear in
a new scene. However, it will change its body appearance to
conceal itself in the surroundings, which makes it camouflaged.
For the event, it is not reasonable to detect the chameleon
using the individual salient or camouflaged object detection
model. Inspired by this observation, it is necessary to design
a task-agnostic model unifying the abilities of saliency and
camouflaged detection.

camouflaged object detection model. Although [21] makes
the joint learning of SOD and COD, its training and testing
are still task-specific, which cannot solve the un-forewarned
case. To solve this urgent problem, in this paper, we focus
on the task-agnostic unified framework of SOD and COD
towards the real-world practicability.

Thanks to the large-scale pixel-level annotated bench-
marks, e.g., DUTS [55] and COD10K [10], deep supervised
research in both SOD and COD has advanced significantly
in separate avenues. However, the joint learning of SOD and
COD is still in its infancy. The work [21], named UJSC,
makes specialized study towards this issue via treating SOD
and COD as two contradictory tasks, which is implemented
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Figure 2: Motivation statement. The previous UJSC [21] is task-specific, which must fed salient and camouflaged image into
SOD network and COD network correspondingly, otherwise generating poor results. This challenge can well be solved by our
task-agnostic framework.

by two branches of encoders and decoders that share the
structures but not parameters. As shown in Fig. 2, the pro-
cedure of UJSC [21] can be described as i) Besides the
SOD image and COD image in the training stage, extra
general object images are required for the contradiction
measure to regularize SOD and COD encoders; ii) UJSC
[21] manually labels SOD as 0 and COD as 1 to train the
uncertainty learning separately; iii) UJSC [21] trains SOD
and COD branches using SOD and COD datasets separately
in an alternate manner; iv) UJSC [21] infers the SOD and
COD task separately. While these steps represent significant
progress for UJSC [21], they make UJSC [21] a task-specific
model, failing to meet the task-agnostic requirement in the
real-world unforewarned case.

In this paper, we make a preliminary exploration into the
task-agnostic unified framework for SOD and COD. Tradi-
tionally, human has the ability to identify the target from
its surroundings, irrespective of whether they are salient
or camouflaged, highlighting an agreeable nature of SOD
and COD: the identification of foreground from background.
Inspired by such agreeable nature of binary segmentation,
we propose a Contrastive Distillation Paradigm (CDP) to
distil the target from the background. As shown in our
framework of Fig. 2, the SOD and COD tasks share the same
encoder and decoder in terms of structures and parameters,
involving one input for mixed SOD & COD images. During
training, the foreground semantics and background seman-
tics, derived from the decoder and encoder, respectively,
are fed into the contrastive distillation framework, which
is learned by the contrastive loss. During test, both SOD
and COD tasks are inferred using the same encoder and
decoder with the same parameters. Compared with UJSC

[21], our CDP has three advantages: i) No extra general
object images avoid the contradiction measure; ii) Only one
input for mixed SOD & COD images ensures the proposed
framework task-agnostic in the training and testing stages,
making it adaptable to real-world applications; iii) Our CDP
can be plugged in the existing image segmentation mod-
els. To discuss the effectiveness of our CDP, we design
simple but effective encoder and decoder, which produces
a real-time inference with 67 fps. To be concrete, we opt
for ResNet-50 [15] as our encoder choice. The decoder is
designed using the integration of Interval-layer and Global
Context (IGC) in which the interval layers and the deepest
layer of the backbone are involved to be integrated to decode
the image semantics.

Furthermore, UJSC [21] tackles the joint learning of
SOD and COD using large-scale pixel-level SOD and COD
labeled benchmarks, demanding significant human effort,
with each image label consuming approximately 60 minutes
[10]. Although there have been a lot of attempts for unsuper-
vised SOD [68, 60, 27, 80, 42, 48, 39, 81] and unsupervised
COD [75] separately, the joint unsupervised learning of
SOD and COD is an undeveloped field, which is a demand
in real-world life. Due to its versatility, our CDP extends
beyond the confines of supervised learning, enabling the
joint unsupervised learning of SOD and COD. Concretely,
the deep features of DINO [4] are parsed to generate the
initial pseudo mask for supervision at the first two epochs.
In the following, our CDP absorbs the foreground semantics
and pseudo background semantics for contrastive learning to
distil the foreground objects. To train the model with high-
quality labels, pseudo labels are updated for each epoch.

Contributions of this paper are listed as follows:
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i) We make the study to unify SOD and COD in a task-
agnostic framework via a contrastive distillation paradigm,
inspired by their agreeable nature of binary segmentation.

ii) By unifying SOD and COD on both supervised and
unsupervised settings, we alleviate the need for extensive
human annotations, thereby reducing the laborious task of
large-scale dataset labeling.

iii) Experiments on public SOD and COD benchmarks
demonstrate that our task-agnostic framework achieves the
competitive performance in the supervised setting and State-
Of-The-Art (SOTA) performance in the unsupervised set-
ting, compared with the previous task-specific methods.

The paper is organized as follows. Sec. 2 reviews the
related work to the proposed method. Sec. 3 introduces
details of the proposed method. Sec. 4 conducts a serious
of experiments to understand the proposed method. Sec. 5
concludes the paper.

2. Related work
In this section, we will review the related works to our

method, including supervised SOD and COD, unsupervised
SOD and COD, and contrastive learning.

2.1. Supervised SOD and COD
Before deep learning [18], SOD and COD move forward

relying on the hand-crafted methods [2, 31, 17, 41]. The
emergence of deep learning has broken the performance
bottleneck of these tasks, which has been a popular trend.

SOD. The development of deep SOD began in [13]
that used a residual reconstruction network. Thereafter, deep
learning has been largely developed for SOD [56] thanks to
the large-scale pixel-level labels, using Muli-Layer Percep-
tron (MLP) classifiers [22, 77], Fully Convolutional Network
(FCN) [50, 44, 76, 5, 57, 54], Capsule Networks (CapsNets)
[35, 34, 32], and Transformer [29, 71].

COD. Inspired by the hunting of predators, Fan et al.
[10] designed a search-identification network to detect the
camouflaged object, which turns on the research on deep
COD. Thereafter, a lot of attempts have been devoted to
the development of deep COD. For example, Zhai et al.
[67] used graph learning towards COD. Zhong et al. [79]
detected the camouflaged object using the frequency do-
main knowledge. Pang et al. [43] introduced the multi-scale
detection network for COD. Huang et al. [16] designed a
feature shrinkage pyramid architecture using Transformer to
detect the camouflaged object. He et al. [14] introduced the
learnable wavelets towards the task of COD.

There are efforts towards the joint learning of SOD and
COD. Li et al. [21] implemented the joint learning of SOD
and COD via learning the task contradiction and uncertainty.
However, their task-specific model cannot solve the real-
world unforewarned case, which can be solved well by our
task-agnostic framework.

2.2. Unsupervised SOD and COD
Traditional deep SOD and COD usually rely on large-

scale pixel-level labels, e.g., DUTS [55] and COD10K [10],

which consume huge labour. To solve this problem, unsu-
pervised learning without human annotations is employed
to implement SOD and COD.

Unsupervised SOD. Zhang et al. [68] opened the re-
search of unsupervised SOD, which generated high-quality
pseudo labels via discovering consistency from noisy tra-
ditional detectors [47, 70, 69]. Following this route, there
are a few works towards unsupervised SOD [42, 72]. More
recently, unsupervised SOD generates high-quality pseudo
labels from high-level deep semantics. For example, Zhou
et al. [80] activated the multi-level semantics for high-
quality labels generation to train the detector. Later on, they
developed unsupervised SOD via mining saliency knowl-
edge from easy and hard samples [81]. Shin et al. [48]
introduced spectral clustering to generate pseudo labels for
unsupervised SOD.

Unsupervised COD. In [75], a source-free unsupervised
domain adaptation was introduced to solve the task of unsu-
pervised COD.

There have few efforts to the joint unsupervised learning
of SOD and COD. In this paper, we make the study for
unified SOD and COD without human annotations.

2.3. Contrastive learning
Recently, contrastive learning, which learns general and

robust feature representations by comparing similar and
dissimilar pairs, has shown power in a lot of computer vision
tasks. For example, Lo et al. [36] learned better illuminant-
dependent features for color constancy via constructing con-
trastive pairs. Li et al. [25] devised a targeted supervised
contrastive learning framework to enhance the feature distri-
bution uniformity for further image recognition in the case of
long-tail data. Tang et al. [53] segmented point cloud objects
using a contrastive boundary learning framework. Zhao et
al. [78] achieved semantic segmentation with limited labels
using a contrastive training strategy. Zhang et al. [74] solved
the cross-modal animal pose estimation problem using a
contrastive learning paradigm for the language knowledge
and animal pose images. Meng et al. [40] combined the
learning of self-contrast, cross-contrast, and ambiguity con-
trast for multi-object tracking.

In this paper, we used contrastive learning to make SOD
and COD tasks in a unified paradigm via distilling the target
from the background.

3. Proposed method
In this section, we will illustrate the proposed method

with clear details for techniquely understanding.

3.1. Overview
Fig. 3 overviews the proposed framework. It includes

supervised and unsupervised settings. In the supervised set-
ting, IGC infers the foreground map, which is supervised by
ground truth. Besides, the foreground semantics and back-
ground semantics, generated by the decoder and encoder
of IGC, respectively, are supervised using the contrastive
loss within CDP. Under the unsupervised setting, The deep
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Figure 3: Overview of the framework. E∗ is the last layer of different blocks in ResNet-50 [15]. 𝐷 and 𝑁𝐸𝐺 denote the training
losses of Eq. (9) and Eq. (8), respectively. Under the supervised setting, the foreground map inferred by IGC is supervised by
ground truth. Besides, the foreground semantics and background semantics, generated by the decoder and encoder of IGC,
respectively, are supervised using the contrastive loss within CDP. Under the unsupervised setting, the deep features of DINO [4]
are parsed to generate the pseudo masks at the initial two epochs, which will be updated at each epoch. Note that, only IGC is
run for inference at the test stage for both supervised and unsupervised settings.

features of DINO [4] are parsed to generate the initial pseudo
mask for supervision at the first two epochs, which will be
updated at each epoch. IGC is run for inference at the test
stage for both supervised and unsupervised settings.

3.2. Interval-layer and global contextual network
Context is an important semantic in deep neural net-

works. To design a simple but superior network to decode
the image semantics for further inference, we dig into the
context implicitly contained in the deep backbone, including
interval-layer context and global context.

Suppose the image denoted as 𝐈 ∈ ℜ𝐻×𝑊 ×3, which is
fed into ResNet-50 [15] to extract multi-level deep features,
denoted as 𝐄𝑖 ∈ ℜ

𝐻
2𝑖+1

× 𝑊
2𝑖+1

×𝐶𝑖 , 𝑖 ∈ [0, 1, 2, 3, 4], 𝐶𝑖 ∈
[64, 256, 512, 1024, 2048]. First, the interval-layer features,
i.e., E0 & E2 and E1 & E3, have different receptive fields
with respect to the input image, concretely 22× spatial dif-
ference. These interval-layer contexts will help to capture
different-scale objects. Besides, the deepest-layer features,
i.e., E4 learns the high-level image semantics from the global
perspective thanks to the 25× receptive field. Based on
these two findings, we expect to integrate the interval-layer
contexts and the global context for the semantic exploration
of the input image. Specifically, All E𝑖s are transformed into
the same-channel versions, i.e.,

F𝑖 ∈ ℜ
𝐻

2𝑖+1
× 𝑊
2𝑖+1

×64 = 𝑓𝑐𝑜𝑛𝑣(E𝑖), 𝑖 = 0, 1, 2, 3, (1)

where 𝑓𝑐𝑜𝑛𝑣 (⋅) means the operation of convolution.
On top of that, the interval-layer features, i.e., F0 & F2

and F1 & F3, and the global features, i.e., F4 are mixed

together to combine the interval-layer context and the global
context, i.e.,

F𝑐𝑒𝑥
1 ∈ ℜ

𝐻
22

×𝑊
22

×64 = 𝑓𝑐𝑜𝑛𝑣(
[[

F1, 𝑏𝑖(F3), 𝑏𝑖(F4))
]]

),

F𝑐𝑒𝑥
2 ∈ ℜ

𝐻
21

×𝑊
21

×64 = 𝑓𝑐𝑜𝑛𝑣(
[[

F0, 𝑏𝑖(F2), 𝑏𝑖(F4))
]]

),
(2)

where [[∗]] means the concatenation operation along the
channel dimension. 𝑏𝑖(⋅) denote the upsampling operations
using the bilinear interpolation.

In the following, the context-aware features F𝑐𝑒𝑥
1 and

F𝑐𝑒𝑥
2 are integrated further to compute the final context

semantics, i.e.,

F𝑐𝑒𝑥 ∈ ℜ
𝐻
21

×𝑊
21

×64 = 𝑏𝑖(F𝑐𝑒𝑥
1 )⊙ F𝑐𝑒𝑥

2 , (3)

where ⊙ means the element-wise multiplication.
The target inference is obtained by an average along the

channel dimension, i.e.,

T ∈ ℜ
𝐻
21

×𝑊
21

×1 =
∑64

𝑖=1 𝐅
𝑐𝑒𝑥(∶,∶,𝑖)
64 . (4)

The final inference map can be achieved by activating T
using the Sigmoid function, i.e.,

T𝑎𝑐𝑡 ∈ ℜ𝐻×𝑊 ×1 = 1
1+𝑒−(𝑏𝑖(𝐓)) . (5)

3.3. Contrastive distillation paradigm
To identify the targets from the surroundings, we pro-

pose a CDP model to distil the foreground from the back-
ground, which suits the saliency and camouflage scenes. The
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Figure 4: Visualizations for pseudo masks update.

idea is to compute the contrast between the target inference
and the background with the purpose of training the model
for better inference. To this end, as shown in Fig. 3, CDP is
implemented by three components, including foreground se-
mantic vector, background semantic vector, and foreground-
background contrastive learning, which will be described in
detail in the following.

Given a batch of 𝑛 samples, denoted as 𝐈{1∶𝑛}, the
foreground semantic vector 𝐯𝑓{1∶𝑛} is learned via a fully-
connected layer on the inference T, i.e.,

𝐯𝑓{1∶𝑛} ∈ ℜ64 = 𝐖𝑏𝐓 + 𝐛𝑏 (6)

where 𝐖𝑏 and 𝐛𝐛 are the learned weights and bias in the
fully-connected layer.

The background semantic vector 𝐯𝑏{1∶𝑛} is learned using
the background mask (1 −𝐆𝐓) and the intermediate-layer
backbone features, which is determined as the third-layer
features 𝐄2 of the input image due to their suitable receptive
fields. Concretely,

𝐯𝑏{1∶𝑛} ∈ ℜ64 = 𝐖𝑓
(

𝐄2{1∶𝑛} ⊙
(

1 − 𝑑𝑤
(

𝐆𝐓{1∶𝑛}
)))

+𝐛𝑓 ,
(7)

where 𝑑𝑤(⋅) and GT mean the downsampling operation
and ground truth, respectively. 𝐖𝑓 and 𝐛𝑓 are the learned
weights and bias in the fully-connected layer.

On top of the foreground semantic vector 𝐯𝑓{1∶𝑛} and
the background semantic vector 𝐯𝑏{1∶𝑛} within the batch, the
model can be trained using the contrastive loss as

𝑁𝐸𝐺 = − 1
𝑛2

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
log(1 −

⟨

𝐯𝑏𝑖 , 𝐯
𝑓
𝑖

⟩

‖

‖

‖

𝐯𝑏𝑖
‖

‖

‖

‖

‖

‖

𝐯𝑓𝑖
‖

‖

‖

), (8)

where ⟨∗⟩ and ‖∗‖ indicate the inner product and matrix
modulus, respectively.

Difference to ContrastMask [58]. ContrastMask [58]
migrates from base to novel by sharing query vectors, in
which the foreground query and background query are ob-
tained by averaging features from partitions within a batch
of object proposals accordingly. Differently, we generate
the foreground vector and background vector using pseudo-
labels within an image, which tend to be more semantically
specific.

3.4. Model training
3.4.1. Supervised training

To train the model, besides the contrastive learning
loss 𝑁𝐸𝐺 between foreground and background, extra loss
between the inference and ground truth is involved. To
generate inferences closer to the ground truth in terms of
three aspects, including minimum loss, structure similarity,
and intersection, we take three loss functions, i.e., binary
cross entropy loss (𝐵), structural similarity loss (𝑆 ) [61],
and intersection-over-union loss (𝐼 ), to train the model as

𝐷 = 𝐵(T𝑎𝑐𝑡,𝐆𝐓)+𝑆 (T𝑎𝑐𝑡,𝐆𝐓)+𝐼 (T𝑎𝑐𝑡,𝐆𝐓). (9)

The overall loss  for the model learning is formulated
as the combination of 𝑁𝐸𝐺 and 𝐷, i.e.,

 = 𝑁𝐸𝐺 + 𝐷. (10)

3.4.2. Unsupervised training

Initial pseudo mask. Recently, DINO [4], a new base-
line for self-supervised semantic segmentation, has been
proved successful for many segmentation tasks. Inspired by
its power, it is adopted to produce the initial coarse mask in
our framework. Specifically, as shown in Fig. 3, the input im-
age is fed into the pretrained DINO [4] to generate one class
token and patch tokens. The latter are shapely transformed
into dense features. On top of that, one convolution with a
kernel of 1 × 1 is carried out to achieve the desired pseudo
masks 𝐏𝐌 ∈ ℜ𝐻×𝑊 ×1 .

Model training. The loss functions of 𝑁𝐸𝐺 and 𝐷
are both employed to train the model. However, the un-
supervised setting is learned by the pseudo mask instead
of ground truth, there is some minor modifications. Firstly,
𝐷 computes the contrast between the current-epoch target
inference and the previous-epoch background. To this end,
the background semantic vector is computed by using the
previous-epoch pseudo mask 𝐏𝐌, i.e.,

𝐯𝑏{1∶𝑛} ∈ ℜ64 = 𝑓𝑐
(

𝐄2{1∶𝑛} ⊙
(

1 − 𝑑𝑜𝑤𝑛
(

𝐏𝐌{1∶𝑛}
)))

.
(11)

Secondly, 𝐷 computes the error between the inference
and the pseudo mask as

𝐷 = 𝐵(T𝑎𝑐𝑡,𝐏𝐌)+𝑆 (T𝑎𝑐𝑡,𝐏𝐌)+𝐼 (T𝑎𝑐𝑡,𝐏𝐌). (12)

Pseuod mask update. To train the model well, pseudo
labels are updated during the training epochs using the
following moving average strategy

𝐏𝐌𝑖 =
{ 𝐏𝐌0, 𝑖 ≤ 2,

𝜆𝐏𝐌𝑖 + (1 − 𝜆)𝐓𝑎𝑐𝑡𝑖 , 𝑖 > 2,
(13)

where the superscript means the training epoch. 𝐏𝐌0 is
the pseudo mask 𝐏𝐌 generated by parsing deep features of
DINO [4]. 𝜆 is experimentally set to 0.4 in this paper. As
shown in Fig. 4, the pseudo-mask quality improves along
the training epochs.
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Table 1
Training datasets details in Table 2 & 3. According with the
SOTA unsupervised SOD methods, MSRA-B [55] is used for
training our model in the unsupervised setting.

Model Training datasets Setting

Ours𝐷−𝐶
DUTS-TR [55]
10553 images &

CAMO [20]
1000 images &

COD10K [10]
3040 images

Supervised&
Unsupervised

Ours𝐷 DUTS-TR [55] 10553 images Supervised

Ours𝑀−𝐶
MSRA-B [55]
2500 images &

CAMO [20]
1000 images &

COD10K [10]
3040 images Unsupervised

Ours𝑀 MSRA-B [55] 2500 images Unsupervised

4. Experiment and Analysis
In this section, we will conduct a serious of ablations

and experiments to understand the contributions and perfor-
mance of the proposed method.

4.1. Implementation details
4.1.1. Training details

We use the SGD optimizer [3] with an initial learning
rate of 0.005 to train our model with the the batchsize of
20 using one RTX 3090 Ti GPU. The input is resized to
320 × 320. The training convergence occurs for 50 epochs.
The training datasets include SOD training datasets (DUTS-
TR training subset [55] and MSRA-B training subset [30])
and COD training datasets (CAMO [20] and COD10K [10]).
Concretely, Table 1 lists the training details of “Ours𝑀−𝐶”
and “Ours𝐷−𝐶” in Table 2 and 3.

4.1.2. Benchmarks
The benchmarks for evaluation includes SOD and COD

datasets.
ECSSD [47] contains 1,000 images with complicated

structures, which are collected from the Internet.
HKU-IS [22] consists of 3000 training images and 1,447

test images, which are with multiple disconnected objects.
DUTS [55] contains 10,533 training images and 5019

test images, which are with different scenes and various
sizes.

DUT-OMRON [65] has 5,168 images with different
sizes and complex structures.

In terms of HKU-IS [22] and DUTS [55], only the test
images are used for evaluations in our experiments.

CHAMELEON [51] is an unpublished dataset that has
only 76 images collected from the Internet via the Google
search engine using “camouflaged animal” as a keyword.

CPD1K [26] is the earliest dataset for camouflaged
people detection, which contains 1,000 images covering two
scene types, namely woodland and snowfield. The test subset
has 400 images.

COD10K [10], which is collected from multiple pho-
tography websites, contains 10,000 images, including 5,066
camouflaged images, 3,000 background images, and 1,934
non-camouflaged images. The test subset includes 2,026
images.

CAMO [20] has 1,250 images, which are divided into
1,000 training images and 250 testing images.

NC4K [37] is a large-scale COD testing dataset, com-
prising 4,121 images.

4.1.3. Metrics
We evaluate the performance of our model as well

as other state-of-the-art methods from both visual and
quantitative perspectives. The quantitative metrics include
weighted F-measure (𝐹𝛽) [1], Mean Absolute Error (𝑀𝐴𝐸)
[1], S-measure (𝑆𝑚) [8], and E-measure (𝐸𝑚) [9]. Given
a continuous saliency map, a binary mask �̂� is achieved
by thresholding the saliency map 𝐵. Precision is defined
as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |

|

|

�̂� ∩ 𝐺|

|

|

/

|

|

|

�̂�||
|

, and recall is defined as

𝑅𝑒𝑐𝑎𝑙𝑙 = |

|

|

�̂� ∩ 𝐺|

|

|

/

|𝐺|. Then, the PR curve is plotted under
different thresholds.

F-measure is an overall performance indicator, which is
computed by

𝐹𝛽 =

(

1 + 𝛽2
)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. (14)

As suggested in [1], 𝛽2 = 0.3.
𝑀𝐴𝐸 is defined as

𝑀𝐴𝐸 = 1
�̂� × �̂�

∑

𝑖
|𝐵 (𝑖) − 𝐺 (𝑖)|, (15)

where �̂� and �̂� are the width and height of the image,
respectively.

S-measure (𝑆𝑚) [8] is computed by

𝑆𝑚 = 𝛼𝑆𝑜 + (1 − 𝛼)𝑆𝑟, (16)

where 𝑆𝑜 and 𝑆𝑟 represent the object-aware and region-
aware structure similarities between the prediction and the
ground truth, respectively. 𝛼 is set to 0.5 [8].

E-measure (𝐸𝑚) [9] combines local pixel values with
the image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

4.1.4. SOTAs
The SOTA methods for comparison include one super-

vised joint learning method (UJSC [21]), six supervised
SOD methods (PiCANet [28], CPD [62], BASNet [45],
ITSD [82], MINet [44], and PFSN [63]), and four supervised
COD methods (SINet [10], PFNet [38], FEDER [14], and
ZoomNet [43]).

4.1.5. Quantitative comparison
Table 2 lists the performance of different methods on

SOD and COD benchmarks under the supervised setting.
To achieve both SOD and COD results, we re-train the
SOD/COD methods using COD/SOD training datasets to
achieve their COD/SOD results. As listed in Table 2, we
conclude five findings: i) SOD methods trained using COD
datasets cannot get consistently good performance for COD
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Table 2
Performance (%) of different methods on SOD and COD benchmarks under the supervised setting. “–” represents the authors
have not released the results.

SOD methods COD methods Joint learning methods

PiCANet [28] CPD [62] BASNet [45] ITSD [82] MINet [44] SINet [10] PFNet [38] FEDER [14] ZoomNet [43] UJSC [21] Ours𝐷−𝐶

Task-specific Task-specific Task-specific Task-specific Task-specific Task-specific Task-specific Task-specific Task-specific Task-specific Task-agnostic

SOD

ECSSD [47]

𝑀𝐴𝐸 ↓ 4.64 4.02 3.70 4.01 3.62 3.58 3.26 3.22 2.73 3.00 3.39
𝐹𝛽 ↑ 88.67 91.15 91.68 91.01 91.87 91.75 92.52 92.48 93.33 93.50 92.59
𝑆𝑚 ↑ 91.38 91.02 91.62 91.42 91.91 92.39 92.60 92.27 93.47 93.30 92.24
𝐸𝑚 ↑ 92.33 93.77 94.32 93.75 94.32 94.61 95.08 95.18 95.79 96.00 94.81

DUTS [55]

𝑀𝐴𝐸 ↓ 5.41 4.29 4.76 4.23 3.94 4.10 3.82 3.92 3.27 3.20 3.16
𝐹𝛽 ↑ 78.20 82.44 82.24 83.23 83.49 82.83 84.31 84.55 86.63 86.60 86.65
𝑆𝑚 ↑ 86.70 86.66 86.56 87.71 87.49 87.87 88.17 87.89 90.00 89.90 89.40
𝐸𝑚 ↑ 87.24 90.20 89.54 90.56 90.67 91.78 91.74 91.72 92.96 93.70 93.07

DUT-O [65]

𝑀𝐴𝐸 ↓ 6.79 5.67 5.65 6.32 5.69 5.63 5.54 5.63 5.27 5.10 4.92
𝐹𝛽 ↑ 72.24 73.85 76.68 75.24 74.04 75.16 75.99 77.11 77.12 78.20 77.43
𝑆𝑚 ↑ 82.64 81.77 83.62 82.88 82.18 83.24 83.25 83.68 84.09 85.00 83.86
𝐸𝑚 ↑ 83.28 84.50 86.50 85.28 84.58 85.81 86.24 87.18 86.61 88.40 86.85

PASCAL-S [26]

𝑀𝐴𝐸 ↓ 7.83 7.21 7.58 6.81 6.39 6.65 6.48 6.68 5.46 – 5.76
𝐹𝛽 ↑ 80.02 82.30 81.77 83.05 83.03 82.78 83.33 82.75 85.05 – 84.57
𝑆𝑚 ↑ 84.77 84.46 83.80 85.63 85.54 85.89 85.62 85.10 87.15 – 86.40
𝐸𝑚 ↑ 86.86 88.25 87.86 89.15 89.36 89.22 89.92 89.26 91.25 – 90.63

HKU-IS [22]

𝑀𝐴𝐸 ↓ 4.15 3.32 3.29 3.46 3.03 3.21 2.92 2.92 2.34 2.60 2.59
𝐹𝛽 ↑ 87.08 89.58 90.36 89.40 90.55 89.82 90.47 90.50 92.33 92.40 91.87
𝑆𝑚 ↑ 90.54 90.45 90.77 90.68 91.39 91.44 91.44 91.12 93.08 93.10 92.16
𝐸𝑚 ↑ 92.26 94.24 94.30 93.95 94.65 94.53 94.94 94.96 96.14 86.70 95.58

COD

CAMO [20]

𝑀𝐴𝐸 ↓ 12.50 11.29 15.90 10.16 9.03 9.15 8.49 7.12 6.59 7.30 7.17
𝐹𝛽 ↑ 57.26 61.77 47.53 66.29 69.12 70.20 74.61 78.09 79.38 77.17 76.70
𝑆𝑚 ↑ 70.13 71.61 61.82 74.99 74.80 74.54 78.23 80.21 81.97 80.01 79.78
𝐸𝑚 ↑ 71.57 72.27 66.12 77.99 79.18 80.35 84.15 86.66 87.75 85.87 84.44

CHAMELEON [51]

𝑀𝐴𝐸 ↓ 8.52 4.80 11.79 5.73 3.58 3.41 3.25 2.96 2.29 2.96 3.32
𝐹𝛽 ↑ 61.83 77.05 52.80 70.46 80.24 82.67 82.80 85.13 86.35 84.75 81.88
𝑆𝑚 ↑ 76.46 85.65 68.74 81.35 85.48 87.20 88.19 88.67 90.17 89.13 86.45
𝐸𝑚 ↑ 77.70 87.36 72.13 84.39 91.42 93.63 93.08 94.64 94.29 94.52 92.30

COD10K [10]

𝑀𝐴𝐸 ↓ 8.06 5.29 10.54 5.11 4.17 4.26 3.96 3.16 2.89 3.53 3.62
𝐹𝛽 ↑ 48.87 59.53 41.68 61.51 65.69 67.93 70.11 75.12 76.56 72.05 70.93
𝑆𝑚 ↑ 69.62 75.01 63.43 76.68 76.97 77.64 79.98 82.23 83.84 80.89 79.12
𝐸𝑚 ↑ 71.17 77.63 67.82 80.83 83.24 86.42 87.73 89.95 88.80 88.41 86.29

NC4K [37]

𝑀𝐴𝐸 ↓ 8.84 7.20 – 6.39 5.55 5.76 5.27 4.43 4.34 4.65 5.05
𝐹𝛽 ↑ 63.96 70.53 – 72.88 76.42 76.86 78.44 82.41 81.75 80.62 79.88
𝑆𝑚 ↑ 75.75 78.74 – 81.08 81.22 80.80 82.90 84.70 85.28 84.15 88.01
𝐸𝑚 ↑ 77.27 80.81 – 84.49 86.23 87.13 88.77 90.70 89.60 89.84 90.23

because camouflaged objects are hard than the salient ob-
jects for identification; ii) COD methods trained using SOD
datasets can get good SOD performance because salient ob-
jects are easy samples for COD; iii) The only joint learning
UJSC [21] gets consistently good performance for both SOD
and COD, but its task-specificity cannot solve the unfore-
warnable case; iv) As the only task-agnostic method, our
method performs well for SOD and COD, and competitively
with the previous task-specific methods.

It is reasonable that our model is slightly inferior to UJSC
[21] and ZoomNet [43] because they are task-specific. More
specifically, ZoomNet [43] is trained using COD datasets.
UJSC [21] is trained using SOD and COD datasets for SOD
decoder and COD decoder separately. However, our model
is trained using the joint SOD and COD datasets, which is
task-agnostic but introduces some domain bias.

4.1.6. Visual comparison
For better displaying the joint learning of SOD and COD,

Figs. 5 shows visual detections for SOD and COD in the
supervised setting, respectively. As displayed in Fig. 5, using
the unified framework, we get detection results more closer
to ground truth in terms of object wholeness and uniformity
in the supervised circumstance.

4.2. Supervised learning
4.3. Unsupervised learning
4.3.1. SOTAs

The chosen SOTA methods for comparison include five
unsupervised SOD methods (SBF [68], USPS [42], UMNet
[60], A2S [80], and A2S v2 [81]), (only) one unsupervised
COD method (UCOS [75]), and one unsupervised universal
image segmentation method (FOUND [49]).

4.3.2. Quantitative comparison
Table 3 lists the performance of different unsupervised

methods on SOD and COD benchmarks. Similar to the
supervised setting, we re-train the unsupervised SOD/COD
models using the COD/SOD datasets to achieve COD/SOD
results. As shown in Table 3, we conclude three findings:
i) The unsupervised SOD models trained using the COD
datasets cannot well solve the COD task; ii) The unsuper-
vised COD method trained using the SOD datasets cannot
well solve the SOD task either; iii) Our task-agnostic model
performs better than the previous task-specific SOD and
COD methods on most metrics; iv) Our model beats the
previous universal FOUND [49] by a large margin.

4.3.3. Visual comparison
For better displaying the joint learning of SOD and COD,

Fig. 6 shows visual detections for SOD and COD in the
unsupervised setting, respectively. As displayed in Fig. 6
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Table 3
Performance (%) of different methods on SOD and COD benchmarks under the unsupervised setting. “–” represents the authors
have not released the results.

SOD methods COD method Universal method Joint learning methods

SBF [68] USPS [42] UMNet [60] A2S [80] A2Sv2 [81] UCOS [75] FOUND [49] Ours𝑀−𝐶 Ours𝐷−𝐶

Task-specific Task-specific Task-specific Task-specific Task-specific Task-specific Task-agnostic Task-agnostic

SOD

ECSSD [47]

𝑀𝐴𝐸 ↓ 8.80 6.11 6.36 6.40 4.41 4.87 5.11 4.36 4.22
𝐹𝛽 ↑ 79.84 87.00 87.74 88.87 91.43 88.83 89.41 91.33 91.80
𝑆𝑚 ↑ 83.23 85.66 86.77 86.65 89.35 87.83 87.53 89.82 89.97
𝐸𝑚 ↑ 85.01 88.75 89.89 90.91 93.66 93.13 93.03 94.05 94.23

DUTS [55]

𝑀𝐴𝐸 ↓ 10.69 6.57 6.67 6.46 4.68 – 6.07 5.32 4.77
𝐹𝛽 ↑ 62.70 71.98 74.99 75.91 81.47 – 74.97 78.24 80.71
𝑆𝑚 ↑ 68.61 77.17 80.27 81.11 84.24 – 80.33 83.34 84.55
𝐸𝑚 ↑ 71.54 80.11 84.48 86.51 90.19 – 86.60 88.69 90.25

DUT-O [65]

𝑀𝐴𝐸 ↓ 10.76 5.70 6.31 6.88 6.09 – 8.83 6.85 6.65
𝐹𝛽 ↑ 61.20 72.51 73.67 72.76 74.98 – 66.30 72.01 73.16
𝑆𝑚 ↑ 74.73 79.03 80.47 79.50 81.22 – 74.69 79.76 80.33
𝐸𝑚 ↑ 76.32 81.17 83.29 84.50 86.35 – 80.24 84.39 84.83

PASCAL-S [26]

𝑀𝐴𝐸 ↓ 13.09 10.54 – 10.35 7.25 – 7.86 7.47 6.90
𝐹𝛽 ↑ 69.51 74.47 – 78.07 82.10 – 79.96 81.45 82.41
𝑆𝑚 ↑ 75.79 76.54 – 78.70 83.00 – 81.09 82.70 83.50
𝐸𝑚 ↑ 77.77 79.47 – 83.69 88.72 – 87.45 88.12 89.12

HKU-IS [22]

𝑀𝐴𝐸 ↓ 7.53 4.21 4.12 4.20 3.65 4.09 4.20 3.34 3.23
𝐹𝛽 ↑ 80.50 87.45 88.41 88.78 90.14 86.95 87.47 90.16 90.57
𝑆𝑚 ↑ 82.91 86.68 88.65 88.23 88.99 87.13 86.93 89.71 89.99
𝐸𝑚 ↑ 89.33 90.64 92.67 93.53 94.24 93.46 93.62 94.94 95.24

COD

CAMO [20]

𝑀𝐴𝐸 ↓ – – – 13.43 17.32 12.70 12.89 11.94 11.35
𝐹𝛽 ↑ – – – 62.80 21.65 64.56 63.31 66.39 67.83
𝑆𝑚 ↑ – – – 67.08 44.57 70.04 68.54 71.57 72.29
𝐸𝑚 ↑ – – – 74.93 38.54 78.41 78.20 78.79 79.77

CHAMELEON [51]

𝑀𝐴𝐸 ↓ – – – 8.78 13.42 9.53 9.51 8.34 8.14
𝐹𝛽 ↑ – – – 63.61 17.97 62.90 58.96 65.33 65.39
𝑆𝑚 ↑ – – – 70.41 45.43 71.49 68.43 73.20 72.91
𝐸𝑚 ↑ – – – 81.31 38.11 80.18 81.01 82.80 83.32

COD10K [10]

𝑀𝐴𝐸 ↓ – – – 8.55 8.45 8.62 8.50 7.83 7.37
𝐹𝛽 ↑ – – – 50.53 29.22 54.61 51.95 54.84 56.46
𝑆𝑚 ↑ – – – 66.28 51.96 68.89 67.03 69.52 70.36
𝐸𝑚 ↑ – – – 73.76 52.67 73.95 75.07 76.19 78.00

NC4K [37]

𝑀𝐴𝐸 ↓ – – – 9.38 13.59 8.52 8.39 7.89 7.57
𝐹𝛽 ↑ – – – 65.95 36.36 68.93 67.40 70.56 71.66
𝑆𝑚 ↑ – – – 72.14 51.18 75.45 74.12 76.35 76.87
𝐸𝑚 ↑ – – – 80.27 48.95 81.92 82.44 83.28 84.18

Figure 5: Visual comparison for SOD and COD in the supervised setting.

in the unsupervised setting, the previous methods mostly
introduce lots of noise in the detected saliency map, and
even cannot identify the camouflaged objects. Differently,
our model has the ability of identifying and segmenting the
salient object and camouflage object well without human
annotation.

4.4. Ablation Study
4.4.1. CDP

Table 4 lists the performance of different plug-in models.
Thanks to the CDP paradigm, the existing models can be

improved further, e.g., DUTS [55], DUT-O [65], CAMO
[20], CHAMELEON [51], COD10K [10], and NC4K [37].
Especially our CDP paradigm helps the existing SOD meth-
ods get large-margin improvements for the COD task. This
indicates that our CDP paradigm has great potentials for
the agnostic tasks. Moreover, for the purpose of better de-
scribing the contribution of the proposed CDP to the joint
learning of SOD and COD, we conduct the experiments of
training the existing SOD or COD models using the joint
SOD and COD datasets. As shown in Table 5 and Table
6, using our CDP paradigm, the joint learning of SOD and
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Figure 6: Visual comparison for SOD and COD in the unsupervised setting.

Table 4
Ablation study (%) for CDP in the supervised setting. “∗ −CDP” is achieved by replacing IGC with “∗” model in our framework.

CPD [62] CPD-CDP ITSD [82] ITSD-CDP MINet [44] MINet-CDP

SOD

ECSSD

𝑀𝐴𝐸 ↓ 4.02 4.60 4.01 3.65 3.62 3.95
𝐹𝛽 ↑ 91.15 89.36 91.01 91.59 91.87 91.32
𝑆𝑚 ↑ 91.02 89.62 91.42 91.43 91.91 91.07
𝐸𝑚 ↑ 93.77 91.76 93.75 94.01 94.32 93.45

DUTS

𝑀𝐴𝐸 ↓ 4.29 3.19 4.23 3.24 3.94 3.4
𝐹𝛽 ↑ 82.44 86.15 83.23 86.27 83.49 85.89
𝑆𝑚 ↑ 86.66 89.26 87.71 89.30 87.49 88.82
𝐸𝑚 ↑ 90.2 93.21 90.56 93.29 90.67 92.54

DUT-O

𝑀𝐴𝐸 ↓ 5.67 4.91 6.32 4.93 5.69 5.43
𝐹𝛽 ↑ 73.85 76.75 75.24 77.96 74.04 75.48
𝑆𝑚 ↑ 81.77 83.79 82.88 84.47 82.18 82.82
𝐸𝑚 ↑ 84.5 86.88 85.28 88.11 84.58 86.16

PASCAL-S

𝑀𝐴𝐸 ↓ 7.21 6.36 6.81 5.97 6.39 6.47
𝐹𝛽 ↑ 82.3 83.38 83.05 84.09 83.03 83.19
𝑆𝑚 ↑ 84.46 85.3 85.63 85.78 85.54 85.21
𝐸𝑚 ↑ 88.25 88.53 89.15 89.56 89.36 88.67

HKU-IS

𝑀𝐴𝐸 ↑ 3.32 3.57 3.46 3.15 3.03 3.19
𝐹𝛽 ↑ 89.58 88.88 89.4 89.98 90.55 90.14
𝑆𝑚 ↑ 90.45 89.75 90.68 90.52 91.39 90.6
𝐸𝑚 ↑ 94.24 92.88 93.95 93.90 94.65 93.91

COD

CAMO

𝑀𝐴𝐸 ↓ 11.29 7.92 10.16 8.33 9.03 8.8
𝐹𝛽 ↑ 61.77 75.37 66.29 73.90 69.12 71.97
𝑆𝑚 ↑ 71.61 79.43 74.99 77.83 74.8 76.56
𝐸𝑚 ↑ 72.27 84.94 77.99 83.87 79.18 82.35

CHAMELEON

𝑀𝐴𝐸 ↓ 4.8 3.26 5.73 3.41 3.58 3.65
𝐹𝛽 ↑ 77.05 81.65 70.46 81.52 80.24 79.71
𝑆𝑚 ↑ 85.65 86.81 81.35 86.14 85.48 84.67
𝐸𝑚 ↑ 87.36 93.06 84.39 92.69 91.42 91.08

COD10K

𝑀𝐴𝐸 ↓ 5.29 3.67 5.11 4.01 4.17 4.01
𝐹𝛽 ↑ 59.53 70.57 61.51 69.01 65.69 69.84
𝑆𝑚 ↑ 75.01 79.67 76.68 78.51 76.97 78.92
𝐸𝑚 ↑ 77.63 87.22 80.83 86.43 83.24 86.21

NC4K

𝑀𝐴𝐸 ↓ 7.2 4.82 6.39 5.10 5.55 5.12
𝐹𝛽 ↑ 70.53 79.71 72.88 78.78 76.42 78.94
𝑆𝑚 ↑ 78.74 83.65 81.08 82.94 81.22 82.86
𝐸𝑚 ↑ 80.81 88.96 84.49 88.51 86.23 88.17

COD will be enhanced, compared with the joint learning
directly using the joint training datasets.

4.4.2. Different components
Table 7(a) lists the performance of different components.

On top of BASE, our IGC gets obvious improvements for
both SOD and COD tasks. The performance will be im-
proved further by our CDP, which proves the power of our
CDP paradigm for the unified framework of SOD and COD.

4.4.3. Different initial pseudo masks
Table 7(b) lists the performance of different initial

pseudo masks generations, including TokenCut [59], Spec-
tralSeg [39], SelfMask [48], and our pseudo mask. Although

SelfMask [48] performs well on two SOD benchmarks, our
method achieves 27/36 best metrics on SOD/COD tasks.
Besides, the update of pseudo labels during training is also
crucial, which has been proved in Table 8(a) with the fact
that the pseudo masks update improves the performance a
lot for both SOD and COD tasks in the unsupervised setting.

4.4.4. Different-layer background semantics
Table 7(c) lists the performance of different layers, in-

cluding E0 ∼ E4, of the encoder for background semantics
learning within the CDP paradigm. E2 gets all best metrics
for SOD/COD, which indicates E2 can well help to extract
the background semantics for both salient and camouflaged
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Table 5
Ablation study (%) of CDP for SOD in the supervised setting.

method
ECSSD [47] DUTS [55] DUT-O [65] PASCAL-S [26] HKU-IS [22]

𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑

CPD𝐷 [62] 4.02 91.15 91.02 93.77 4.29 82.44 86.66 90.20 5.67 73.85 81.77 84.50 7.21 82.30 84.46 88.25 3.32 89.58 90.45 94.24
CPD𝐷−𝐶 4.98 88.97 90.59 91.44 4.53 81.15 87.38 88.83 5.91 72.66 82.55 83.66 9.12 77.30 82.03 82.57 3.75 88.11 90.80 92.69

CPD-CDP𝐷−𝐶 4.60 89.36 89.62 91.76 3.19 86.15 89.26 93.21 4.91 76.75 83.79 86.88 6.36 83.38 85.30 88.53 3.57 88.88 89.75 92.88

SINet𝐷 [10] 3.58 91.75 92.39 94.61 4.10 82.83 87.87 91.78 5.63 75.16 83.24 85.81 6.65 82.78 85.89 89.22 3.21 89.82 91.44 94.53
SINet𝐷−𝐶 4.46 90.23 91.00 92.69 3.98 83.44 88.31 90.77 5.54 74.35 82.99 85.03 7.45 81.72 84.74 86.83 3.29 89.61 91.38 94.00

SINet-CDP𝐷−𝐶 3.91 91.20 91.26 93.73 3.66 84.75 88.06 92.22 5.12 76.15 83.24 86.72 6.87 82.68 84.71 88.36 3.33 89.64 90.31 93.86

Table 6
Ablation study (%) of CDP for COD in the supervised setting.

method
CAMO [20] CHAMELEON [51] COD10K [10] NC4K [37]

𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑

CPD𝐶 [62] 11.29 61.77 71.61 72.27 4.80 77.05 85.65 87.36 5.29 59.53 75.01 77.63 7.20 70.53 78.74 80.81
CPD𝐷−𝐶 11.39 61.15 71.06 72.69 5.16 74.99 84.57 85.29 5.60 59.10 75.38 76.68 5.60 70.90 79.68 81.09

CPD-CDP𝐷−𝐶 7.92 75.37 79.43 84.94 3.26 81.65 86.81 93.06 3.67 70.57 79.67 87.22 4.82 79.70 83.65 88.96

SINet𝐶 [10] 9.15 70.20 74.54 80.35 3.41 82.67 87.20 93.63 4.26 67.93 77.64 86.42 5.76 76.86 80.80 87.13
SINet𝐷−𝐶 10.10 66.58 74.51 76.54 3.75 80.50 88.12 89.63 4.79 64.07 77.41 80.50 6.13 74.75 81.45 84.18

SINet-CDP𝐷−𝐶 9.62 68.23 74.50 79.72 3.49 80.41 85.96 92.69 4.40 66.72 77.35 84.72 5.58 77.19 81.94 87.23

scenes. Based on this observation, we select E2 to learn the
background semantics for SOD and COD.

4.4.5. Pseudo label
Following the pipeline of previous unsupervised salient

object detection works, we select our initial pseudo labels
to train CDP [62] (SOD method), ZoomNet [43] (COD
method) in the unsupervised setting. As shown in Table

8(b), our approach beats CPD [62] and ZoomNet [43]. This
proves our advantage of the tolerance to coarse pseudo-
labels, which comes from the update of pseudo labels during
training.

4.4.6. Training separately.
We list the results of the proposed method trained using

SOD and COD datasets separately in Table 8(c) and (d)

Table 7
Ablation study (%) in the unsupervised setting.

(a) Different components (b) Different initial pseudo masks (c) Different background semantics

BASE BASE+IGC BASE+IGC+CDP TokenCut [59] SpectralSeg [39] SelfMask [48] Ours E0 E1 E2 E3 E4

SOD

ECSSD [47]

𝑀𝐴𝐸 ↓ 5.09 4.63 4.22 8.55 14.21 5.89 5.09 4.35 4.38 4.22 4.36 4.38
𝐹𝛽 ↑ 89.23 90.71 91.80 84.84 69.80 89.19 89.23 91.27 91.26 91.80 91.27 91.18
𝑆𝑚 ↑ 87.36 88.73 89.97 82.77 75.98 86.24 87.36 89.75 89.76 89.97 89.78 89.63
𝐸𝑚 ↑ 93.01 92.87 94.23 86.97 80.37 91.90 93.01 94.03 93.99 94.23 94.01 93.85

DUTS [55]

𝑀𝐴𝐸 ↓ 6.22 5.53 4.77 8.87 16.42 5.58 6.22 5.48 5.39 4.77 5.46 5.40
𝐹𝛽 ↑ 73.87 77.85 80.71 74.17 52.53 78.69 73.87 77.83 78.23 80.71 77.91 77.95
𝑆𝑚 ↑ 79.85 82.41 84.55 77.18 66.20 81.36 79.85 83.25 83.32 84.55 83.19 83.30
𝐸𝑚 ↑ 85.90 87.54 90.25 82.67 69.01 88.63 85.90 88.27 88.55 90.25 88.33 88.48

DUT-O [65]

𝑀𝐴𝐸 ↓ 9.14 7.14 6.65 10.61 19.67 6.55 9.14 7.29 7.14 6.65 7.23 7.18
𝐹𝛽 ↑ 65.14 71.41 73.16 68.35 47.16 73.12 65.14 71.04 71.40 72.01 71.15 71.11
𝑆𝑚 ↑ 74.11 78.61 80.33 75.21 62.47 72.01 74.11 79.37 79.48 79.76 79.32 79.27
𝐸𝑚 ↑ 79.39 83.76 84.83 80.33 64.29 85.78 79.39 83.39 83.73 84.83 83.50 83.21

PASCAL-S [26]

𝑀𝐴𝐸 ↓ 7.76 7.83 6.90 12.44 19.18 8.44 7.76 7.52 7.51 6.90 7.48 7.49
𝐹𝛽 ↑ 79.64 80.86 82.41 75.86 60.28 81.10 79.64 81.08 81.24 82.41 81.19 81.05
𝑆𝑚 ↑ 81.09 81.92 83.50 76.09 67.40 80.44 81.09 82.69 82.74 83.50 82.69 82.60
𝐸𝑚 ↑ 87.41 87.33 89.12 82.22 72.15 86.75 87.41 88.05 88.07 89.12 88.12 88.09

HKU-IS [22]

𝑀𝐴𝐸 ↓ 4.27 3.54 3.23 7.02 11.35 5.06 4.27 3.34 3.35 3.23 3.35 3.36
𝐹𝛽 ↑ 87.69 89.53 90.57 81.67 67.44 86.80 87.69 89.69 89.78 90.57 89.80 89.50
𝑆𝑚 ↑ 86.57 88.27 89.99 78.66 76.02 84.92 86.57 89.63 89.68 89.99 89.65 89.62
𝐸𝑚 ↑ 93.44 93.67 95.24 84.02 80.80 92.35 93.44 94.84 94.90 95.24 94.85 94.84

COD

CAMO [20]

𝑀𝐴𝐸 ↓ 12.74 12.35 11.35 16.26 23.50 18.77 12.74 12.29 12.24 11.35 12.07 12.23
𝐹𝛽 ↑ 63.27 64.35 67.83 54.33 48.05 53.62 63.27 66.32 66.34 67.83 66.28 66.22
𝑆𝑚 ↑ 67.91 70.37 72.29 63.52 57.91 61.73 67.91 71.50 71.56 72.29 71.50 71.44
𝐸𝑚 ↑ 78.28 78.14 79.77 70.63 64.76 69.79 78.28 78.35 78.34 79.77 78.45 78.37

CHAMELEON [51]

𝑀𝐴𝐸 ↓ 9.38 8.55 8.14 13.18 21.95 17.59 9.38 8.43 8.38 8.14 8.36 8.46
𝐹𝛽 ↑ 59.02 64.26 65.39 53.56 43.96 48.09 59.02 64.90 64.99 65.39 65.21 64.46
𝑆𝑚 ↑ 68.17 72.19 72.91 65.35 57.47 61.89 68.17 73.10 72.98 72.91 73.08 72.83
𝐸𝑚 ↑ 80.62 82.08 83.32 73.96 62.79 67.51 80.62 82.19 83.04 83.32 82.35 81.99

COD10K [10]

𝑀𝐴𝐸 ↓ 8.75 7.98 7.37 10.34 19.32 13.09 8.75 7.98 7.85 7.37 7.84 7.90
𝐹𝛽 ↑ 51.93 53.94 56.46 50.24 38.81 46.92 51.93 54.56 54.78 56.46 54.76 54.65
𝑆𝑚 ↑ 66.87 69.77 70.36 65.78 57.51 63.71 66.87 69.48 69.56 70.36 69.57 69.58
𝐸𝑚 ↑ 76.14 75.90 78.00 73.50 59.52 67.87 76.14 75.90 76.13 78.00 76.17 76.09

NC4K [37]

𝑀𝐴𝐸 ↓ 8.59 8.13 7.57 10.12 15.88 11.41 7.59 7.98 7.94 7.57 7.90 7.93
𝐹𝛽 ↑ 67.35 69.92 71.66 64.88 56.18 63.38 67.35 70.34 70.44 71.66 70.56 70.38
𝑆𝑚 ↑ 74.21 75.47 76.87 72.45 66.91 71.57 74.21 76.50 75.79 76.87 76.32 76.39
𝐸𝑚 ↑ 83.04 82.76 84.18 80.21 71.90 77.65 83.04 83.18 83.05 84.18 83.27 83.22
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Table 8
Improvement for the update of pseudo labels.

ECSSD [47] HKU-IS [22] CAMO [20] COD10K [10]
𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝑚 ↑ 𝐸𝑚 ↑

(a)
Ours(w/o update) 4.94 90.82 88.52 92.21 4.22 88.47 88.73 93.48 12.28 63.92 70.92 77.53 8.04 52.37 68.93 76.32

Ours 4.22 91.80 89.87 94.23 3.23 90.57 89.99 95.24 11.35 67.83 72.29 79.77 7.37 56.46 70.36 78.00

(b)
CPD [62] 5.04 90.12 89.96 92.77 3.92 88.89 89.82 93.58 12.97 63.13 70.92 76.23 8.28 53.52 69.93 75.32

ZoomNet [43] 4.83 90.91 88.89 92.93 3.56 89.72 89.23 94.33 12.56 65.73 71.08 77.45 7.90 55.79 68.87 77.63
Ours 4.22 91.80 89.87 94.23 3.23 90.57 89.99 95.24 11.35 67.83 72.29 79.77 7.37 56.46 70.36 78.00

(c)
Ours_sod 3.16 93.04 92.82 95.20 2.52 91.67 92.25 95.46 – – – – – – – –
Ours_cod – – – – – – – – 7.37 75.35 79.25 84.21 3.60 70.82 79.81 86.78

Ours 3.39 92.59 92.24 94.81 2.59 91.87 92.16 95.58 7.17 76.70 79.78 84.44 3.62 70.93 79.12 86.29

(d)
Ours_sod 4.02 92.35 90.29 94.35 3.14 91.54 90.18 94.99 – – – – – – – –
Ours_cod – – – – – – – – 11.42 67.29 71.73 79.38 7.44 55.56 69.74 77.12

Ours 4.22 91.80 89.87 94.23 3.23 90.57 89.99 95.24 11.35 67.83 72.29 79.77 7.37 56.46 70.36 78.00

Figure 7: Efficiency comparison.

under both supervised and unsupervised settings, respec-
tively. The results of joint training will be lower than that
of separate manner, which is reasonable because joint SOD
and COD datasets inevitably introduce domain bias.

4.4.7. Inference efficiency
Fig. 7 lists parameters, FLOPs, and speed of different

methods. It is obvious that our model gets the competitively
minimal parameters, least FLOPs, and most fast inference
speed of 67 fps, compared with the previous methods, which
indicates the potential of our framework for real-time and
hardware-friendly applications.

5. Conclusions
In this paper, we have made a task-agnostic unified

framework for SOD and COD via a contrastive distilla-
tion paradigm based on the agreeable binary segmenta-
tion nature. In the supervised setting, our framework per-
formed competitively with the previous task-specific SOD
and COD methods. In the unsupervised setting, our frame-
work achieved superior performance on most SOD and COD
benchmarks. As well, our work has a real-time inference
speed. In the future, we will discover the contribution of
our task-agnostic framework for more target-identification
tasks, e.g., forgery detection [12] and shadow removal [46],
and real-world applications, e.g., lesion detection [64] and
remote detection [23].
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