
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Capsule Networks With Capsule-Type
Normalization Routing

Abstract—Capsule Networks (CapsNets) have been well known
for its part-whole relational property, whilst with heavy computa-
tion of the capsule routing. The classic Expectation-Maximization
(EM) capsule routing first compute the vote matrix by multiply-
ing part-whole pose matrix and learnable weight matrix, and
secondly fed vote matrices and activations into EM algorithm
for clustering. The heavy computation comes from a large-scale
computations of vote matrices and large-scale data EM cluster.
To address the challenge of lightweight design of CapsNets,
different from the previous EM capsule routing that obeys the
first-vote-then-cluster rule, we implement a novel first-cluter-
then-vote mechanism. To this end, in this paper, we develop a
capsule-type normalization routing algorithm as illustrated in
Fig. 1 (b). Specifically, we first normalize the part-level capsules
along the type dimension with the aim of transforming all types
of capsules into a uniform distribution. Secondly, all part-level
capsules and their mixed capsules are voted to the whole-level
capsules via a multiplication with a single transformable matrix.
In such way, the cluster computation and matrix multiplication
computation both get reduced with a large margin. Our capsule-
type normalization routing builds a deep CapsNets, which are
proved to be promising on multiple datasets, including MNIST,
SVHN, SmallNORB, CIFAR-10/100. Notably, our CapsNets can
be implemented on the large-scale ImageNet-1K dataset and
beats ResNets, which is quite difficult for the previous CapsNets
versions.

Index Terms—Capsule Network, Capsule-type normalization
routing, Classification

I. INTRODUCTION

COnvolutional Neural Networks (CNNs) have been the
most popular in the deep learning era, although they still

face certain challenges such as information loss in pooling
layers, low robustness, and poor spatial feature correlation.
More concerning is that natural and non-adversarial pose
changes of familiar objects in the real world can easily deceive
deep networks [?], [?], [?].

To address this issue, an alternative neural network called
Capsule Networks (CapsNets) [?], [?] was introduced. Dif-
ferent from the activation scalar in CNNs, each capsule in
CapsNets learns to recognize a visual entity implicitly defined
within a limited range of observation conditions and defor-
mations. By dynamically adjusting the connections between
capsule layers, the routing algorithm captures part-whole
spatial relationships between different-layer capsules, which
helps to handle pose variations and partial occlusions. Such
property improves classification accuracy and generalization
ability of the network. With capsule units and the dynamic
routing algorithm, CapsNets address the static connection lim-
itations of CNNs. Moreover, compared to traditional pooling
operations of CNNs that may loss the pose equivariance, the
routing algorithm can more effectively retain and transmit pose
variations, improving performance for complicated scenes.

Fig. 1: The left and right figures illustrate the training and
testing times for two capsule networks with varying numbers
of capsules. The networks use the pose matrix either multi-
plied by or added to the weight matrix. Experiments on the
CIFAR-10 dataset with a batch size of 20 show that during
training, the network using matrix multiplication takes five
times longer than the one using matrix addition; during testing,
it takes twice as long. The computational overhead increases
significantly with the number of capsules.

Despite the superiority of CapsNets, their have been hin-
dered due to heavy computation, which makes CapsNets
far away from deep layers and further limited in terms of
performance on large-scale tasks, e.g., detection, segmentation,
and large-scale dataset classification such as ImageNet. The
EM routing implements the first-vote-then-cluster strategy,
which first computes the vote matrix to project the low-layer
capsules to high-layer capsules and then cluster projected data.
The heavy computation lies in two folds: i) The vote matrix
in CapsNets [?] is computed by multiplying pose matrix and
a learnable matrix. Large-scale vote matrices lead to heavy
computation of multiplications. As shown in Fig. 1, the mul-
tiplications for vote matrices significantly worsen the training
and testing speed; ii) The EM algorithm implements cluster
on (M ×N ×H×W ×17) data1, which inevitably generate
high cluster computational load due to large-scale data, which
will grow exponentially with respect to the increase of M , N ,
and H ×W .

In this paper, to address the aforementioned challenge, we
propose a novel and efficient capsule routing algorithm, named
Capsule-Type Normalization Routing (CTNR). Different from
the previous EM capsule routing [?] that implements the
first-vote-then-cluster mechanism, which generates large-scale
matrix multiplications and cluster data, our CTNR alterna-
tively opt for first-cluster-then-vote mechanism for lightweight
routing. as show in Fig2. Specifically, we first activate the low-
layer capsule pose matrices by their capsule activation values,

1M and N represent the capsule type number of low and high layers,
respectively. H × W is the spatial resolution of capsule features. 17 is the
capsule dimension (pose matrix plus activation).

IEEE TRANSACTIONS ON IMAGE PROCESSING 2

Fig. 2: The capsule full connectivity adopted by EM routing ensures comprehensive information exchange but imposes a high
memory burden. In contrast, our TCNR approach decouples the capsules through the coefficient matrix, which effectively
reduces the amount of computation while maintaining the necessary interactions between the capsules, and achieves the double
optimization of efficiency and performance.

and carry out clustering on these activated pose matrices using
a type-dimensional normalization, which helps to normalize
M types of capsules to the uniform distribution. Such cluster
mechanism reduce N× cluster data, greatly speeding up
the clustering process. Besides, we mix low-layer activated
capsule pose matrices to get their associated type of capsules.
Secondly, we vote the uniform-distribution low-layer capsules
along with their mixed capsules to the high-layer capsules
using a single learnable matrix. Compared with the previ-
ous large-scale matrix multiplications, our vote mechanism
employs only one transformation matrix, which significantly
reduce the consumption for matrix multiplications, parameters,
and computing memory burden.

On top of the proposed CTNR strategy, we build a deep
CapsNets architecture. Specifically, four blocks, each of which
contains one primary capsule layer and two CTNR layers.
Such deep design of CapsNets are able to tackle complicated
image classification due to their ability of high-level spatial
relations exploration. Without any backbone networks, our
CapsNets achieve promising performance for the fundamental
task of image classification on datasets including MNIST [?],
CIFAR-10/100 [?], SVHN [?], SmallNORB [?], compared
with the previous CapsNets versions. Besides, our CapsNets
achieve 78% accuracy, which surpass the well-known CNNs
ResNet-50 [?].

To sum up, the contributions of this paper are described as
follows:

(1) We propose a novel and efficient Capsule-Type Nor-
malization Routing strategy, which effectively solves the huge
computational complexity and memory consumption problems
associated with matrix multiplication computation and data
cluster.

(2) Inspired by the lightweight CTNR, we build a deep
CapsNets architecture composed by four blocks involving 12
layers like classical CNNs such as VGG and ResNet.

(3) Experiments demonstrate our CapsNets achieve promis-
ing performance in public datasets, including MNIST, CIFAR-
10/100, SVH, and SmallNORB. Besides, our CapsNets per-
form well on the large-scale ImageNet-1K, compared with the
CNNs like VGG and ResNet, which is a great challenge for
the existing CapsNets versions.

This paper is organized as follows. Sec. II reviews the

related references to our work. Sec. III describes the details
of the proposed Capsule-Type Normalization Routing strategy.
Sec. IV Introduces our capsule network architecture. Sec. V
carries out abundant experiments and analyses to understand
our method. Sec. VI concludes the paper.

II. RELATED WORK

In this section, we will review references related to our
work, including CapsNets Routing Algorithm and CapsNets
Architecture.

A. Capsule Routing Algorithm

The capsule routing algorithm is a vital component within
the CapsNets framework, which captures the spatial hierar-
chical relationships and pose changes of the input data by
iteratively assigning weights to enhance the identification and
generalization of the model. Dynamic routing and EM routing
were the first capsule routing algorithms proposed by Hinton et
al. [?], [?]. Following that, many attempts have been devoted
to the developments of capsule routing mechanisms. For
example, Hahn et al. [?] proposed a self-routing strategy for
capsules allocation. Wang et al. [?] proposed a capsule routing
algorithm using orthogonal matrices to reduce redundancy
between capsules. Choi et al. [?] introduced the attention
mechanism into capsule routing through a non-iterative feed-
forward operation. Ahmed and Torresani [?] utilized straight-
through estimators to make binary decisions to either connect
or disconnect the routes between capsules. Yao-Hung et al. [?]
designed routing via inverted a dot-product attention. Liu et al.
[?] utilized a direct pose mapping using a residual routing. Liu
and Zhang et al. [?] introduced disentangled capsule routing
for fast Part-Object relational saliency.

Different from the above capsule routing algorithm, we
propose a first-cluster-then-vote routing algorithm.

B. CapsNets Architecture

The earliest CapsNets architectures employed a Transform-
ing auto-encoders [?] to compute the existence probabilities
and spatial locations of entities. Later, vector CapsNets [?]
are an evolved version containing a capsule routing layer and
a decoder. They further consolidated this concept by proposing

IEEE TRANSACTIONS ON IMAGE PROCESSING 3

Matrix CapsNets [?], which contained a primary capsule layer,
two convolutional capsule layers, and a capsule classification
layer. In addition, various capsule network architectures have
been designed. For, example, To further add depth to the
capsule architecture, Gugglberge et al. [?] introduced jump
connections to the CapsNets architecture. Instead, Liu et al.
[?] deepens the network by employing gestalt residuals. Wani
et al. [?] used an attention mechanism to combine CNNs with
the capsule network oh architecture. Wei et al. [?] proposes
a new architecture by combining Transfomer modules and
capsule networks. Framework in [?] consists of three main
stages: convolutional stage, capsule network stage, and output
layer.

Unlike the above CapsNets structure, we propose a plain-
style capsule network structure similar to VGG with only 12
layers.

III. CAPSULE-TYPE NORMALIZATION ROUTING

In this section, we illustrate the details of proposed Capsule-
Type Normalization Routing layer. It employs the first-cluster-
then-vote mechanism, specifically, the NFM strategy.

A. Capsule-Type Normalization Layer

To extract the capsule features and capture the part-
whole relationship of the capsule, we propose the Capsule-
Type Normalization layer, as shown in Fig 3. which uses a
normalization-mix-vote (NFV) strategy.

1) Normalization : The purpose of the normalization oper-
ation is to achieve internal clustering along the capsule type
dimension, ensuring that each type-capsule possesses its own
unique representational information, and constraining each
type of capsules into a uniform distribution.

Given the capsule features CapF l
C1 ∈ ℜH×W×C1×DP ,

which is composed by the pose matrix P̂ l
C1 and activation

Al
C1, from layer l, deformation is first performed as a prepro-

cessing step to optimize the feature representation to improve
the efficiency and effectiveness of subsequent operations. By
deforming the features, they are made more suitable for
subsequent computational tasks:

P̂l
C1 ∈ ℜH×W×C1×DP

R→ℜHW×C1×DP
P→ℜC1×HW×DP

R→ℜC1×HWDP ;Al
C1 ∈ ℜH×W×C1×DA ,

(1)
where P̂l

C1 and Al
C1 represent the pose matrix and activa-

tion values of capsules in layer l, respectively, and C1 denotes
the capsule type. R and P refer to the operations of reshape
and permute, respectively. The superscript l indicates the layer
index. D can be set as DP = 16 and DA = 1 to disentangle
the pose matrix P̂l

C1 and activation values Al
C1 of the capsules

in layer l, respectively.
Subsequently, the pose matrix P̂l

C1 of each type capsule
in layer l is statistically analyzed in order to normalize the
capsules within each type, in which the purpose is to compute
the mean µ ∈ ℜC1×1 and variance σ2 ∈ ℜC1×1. To this end,
in light of the fact that pose matrix contains the attributes of

the entity, we first compute the statistical distribution on pose
matrix, as follows:

P̃ =
P̂ − µ√
σ2 + eps

, (2)

where the mean µ and variance σ2 can be computed from
the spatial capsules for each type. In Eq. (2), the mean value
µ is subtracted from each element of the pose matrix helps to
eliminate pose bias for each type. The standard deviation σ
ensures a unit standard deviation for each-type capsule.

Thereafter, the pose matrix P̃ is restored to its original scale
as in P̂ :

P̃l
C1 ∈ ℜC1×HWDP

R→ℜC1×H×W×DP
P→ℜH×W×C1×DP ,

(3)
Besides the pose matrix, the activation contains the existing

probability of the entity. To involve activation in the capsules
normalization, we reorganize Eq. (2) as follows :

P̃ =
A(P̂ − µ)√
σ2 + eps

. (4)

Using Eq. (4), the distributed pose matrix is able to be
dynamically activated, enhancing the informative pose repre-
sentation while diminishing the unimportant version.

To discriminate the contributions of different types of cap-
sules, we learn a weight to attend each type as follows:

P̃ = γ
A(P̂ − µ)√
σ2 + eps

, (5)

in which the learnable parameter γ will interpret the existing
probability of the normalized pose, helping to improving the
model expressiveness and generalization. In addition, γ carries
the burden of feature selection, and is able to self-tune itself
to enhance or suppress specific features during the training
process, thus dramatically improving the expressive power and
generalization ability of the model.

2) Mix: The purpose of the Mix operation is to integrate
multiple normalized types of capsules to form comprehensive
capsules.

Based on the learnable contribution parameter γ, we com-
pute a normalized correlation vector Mγ to quantify the
relative importance of different types of capsules as follows:

Mγ = {mi} =
γi∑C1
j=1 γj

, i, j = 1, 2, . . . , C1 , (6)

where mi is the weight of the gamma after weighting, i, j
denotes the index of the lth layer capsule.

Immediately thereafter, the updated weights Mγ are applied
to the feature representation of each capsule through element-
wise multiplication, ensuring that the contribution of each
capsule aligns with its importance. Finally, all the weighted
capsule features are aggregated via summation to form a
unified and comprehensive capsule representation. The mixed
capsules can be obtained by :

Pweight = MγP̃ =

C1∑
i=1

miP̃ =

C1∑
i=1

γiP̃∑C1
j=1 γj

, (7)

IEEE TRANSACTIONS ON IMAGE PROCESSING 4

Fig. 3: The core feature of the capsule routing mechanism is the integration of the NFV (Normalization-Mix-Vote) strategy, a
strategy that significantly improves the performance and efficiency of capsule networks through a combination of normalization,
sample mixing, and feature fusion.

In Ea. (7), the mixed capsules not only integrates individual
type capsule characteristics but also captures interrelationships
and synergies, providing a richer and more comprehensive
information base for subsequent high-level feature extraction
and classification tasks.

3) Transformation vote: The transformation vote operation
is purposed to vote for high-layer capsules from low-layer
versions, which explores the part-whole relational property of
the entity.

After processing a weighted capsule, it is concatenated with
other unweighted capsule feature representations to retain the
full information of all capsules.

Pmix = Cat(P̃ ,Pweight) (8)

where Pmix ∈ ℜH×W×(C1+1)×Dp represents the mixing
capsule. The term C1 + 1 indicates C1 capsules for specific
local features and one additional capsule for high-level global
features. This C1+1 structure enhances the model’s robustness
and generalization in complex visual tasks.

To implement the capsules vote, a transformation matrix
M ∈ ℜH×W×C2×(C1+1) is learned to project low-layer
capsules to high-layer capsules via matrix multiplication as
follows:


P

(l+1)
1

P
(l+1)
2

...
P

(l+1)
C2

 =


w1,1 w1,2 . . . w1,C1+1

w2,1 w2,2 . . . w2,C1+1

...
...

. . .
...

wC2,1 wC2,2 . . . wC2,C1+1




P l
1

P l
2
...

P l
C1+1

,


(9)

where we introduce a learnable coefficient matrix. By
multiplying with this learnable coefficient matrix M ∈
ℜH×W×C2×(C1+1)

where P l+1 and P l represent the pose matrices carried
by the capsules in the l + 1 and l layers, respectively, and
w is a weight matrix that connects the capsules in the two
neighboring layers and is used to transfer.

The pose matrix P l+1 of the generated high-level capsule
again contains its potential activation probability, which is
convolved and activated the pose matrix values Al+1 ∈
ℜH×W××C2×DA of the high-level capsules, after which we
splice the activation value of the generated high-level capsule
with the pose matrix to generate the high-level capsule.

Al+1 ∈ ℜH×W×C2×DA = Sigmoid(fconv(P
l+1))

CapF l+1 ∈ ℜH×W×C2×D = fconv(Cat(P l+1,Al+1))
,

(10)
where Sigmoid (·) means the sigmoid function, fconv (·)

means the pointwise convolution, Cat is a concat operation.
In summary, a Capsule-Type Normalization capsule layer

was designed and implemented, incorporating an innovative
”normalization-mixing-fusion” routing algorithm strategy to
achieve deeper capsule feature extraction.

To this end, the capsule maps of layer (l + 1), i.e., Pl+1

and Al+1, can be obtained. Algorithm 1 illustrate the CTNR
based CapsNet.

B. Discussion
1) Analysis on Complexities: The Normlized Routing

mechanism we devise achieves efficient information decou-

IEEE TRANSACTIONS ON IMAGE PROCESSING 5

Algorithm 1 CTNR based CapsNet. X̂ is the feature maps
of the input image. P ∗

∗ and A∗
∗ are the pose matrices and

activation values, respectively.

Procedure Capsule-Type Normalization Routing (X̂)
1. Primary capsules generation∣∣ P̂ l, Al = PrimaryCaps(X̂)
2. Normalization:∣∣ Normalized pose matrix:∣∣ P̃ l = γ

A(P̂ − µ)√
σ2 + eps

=Eq. 5(P̂ l, Al)

3. Mix:∣∣ Weight matrix:∣∣ Mγ =
γi∑C1
j=1 γj

= Eq. 6(γ)∣∣ Composite capsule pose matrix:∣∣ Pweight =
∑C1

i=1

γiP̃∑C1
j=1 γj

= Eq. 7(P l)∣∣ Mix capsule pose matrix:∣∣ Pmix = Cat(P̃ ,Pweight) =Eq.8(P̃ ,Pweight)
4. Transformation vote:∣∣ Capsule Fusion:∣∣ P l+1 = W ⊗ Pmix = Eq. ??(Pmix,W)∣∣ Heigher Layer Capsule Activition value:∣∣ Al+1 = Sigmoid(fconv(P

l+1)) = Eq. 10∣∣ Heigher Layer Capsule Activition value:∣∣ CapF l+1 = fconv(Cat(P l+1,Al+1)) = Eq. 10

pling between the bottom and top capsules by introducing
a coefficient matrix, an innovation that drastically reduces
the memory requirements for network operation. Specifically,
the coefficient matrix allows the network to handle inter-
capsule connections in a more economical way, avoiding the
potential memory consumption problem in the all-connectivity
mode, and thus optimizing the efficient use of computa-
tional resources while guaranteeing the performance of the
model.Assuming that the low-level capsule is C1 and the high-
level capsule is C2, the memory he occupies in the route is as
follows:

Mem = B ×H ×W × C1 × C2 ×Dp (11)

The number of parameters of our proposed CTNR is:

MemCTNR =B ×H ×W × (C1 + 1)×Dp

+B ×H ×W × C2 × (C1 + 1)
(12)

Ratio =
Mem

MemCTNR

=
B ×H ×W × C1 × C2 ×Dp

B ×H ×W × (C1 + 1)× (Dp + C2)

=
Dp

(1 +
1

C1
)× (

Dp

C2
+ 1))

(13)

Here we give a comparison to show the performance of the
proposed CTNR. Assuming C1, C2 ∈ [2,∞) and calculated
from Eq. (13) that Ratio ∈ [1.18, 16), in our experiment,
when C1 = C2 = 32 and Dp = 16, Mem

MemGN
≈ 10.

Fig. 4: The green plane corresponds to the coefficient matrix
with a capsule fully connected memory occupancy ratio of 10,
while the red line indicates the memory ratio trend when the
number of capsules is equal and not less than 32, specifically
marking the ratio value of 10.34 for a number of 32 capsules.
This presents a direct comparison of memory efficiency for
different configurations.

2) Differences from Group Normalization: The CTNR ap-
proach differs from Group Normalization (GN) in several
ways: 1) Different application scenarios: GN addresses the
problem that BN is ineffective in small batch search, whereas
we address the problem of capsule network architecture. 2)
Different core concepts: GN reduces the internal covariate
bias by partitioning the feature graph into different groups
and normalizing independently within each group as a way
to reduce internal covariate bias. Whereas we are normalizing
within each capsule.3) Implementation details are different:
GN is only dealing with specific groups of features. Whereas
capsule network is normalized only for the pose matrix of the
capsule not for the activation values.

IV. CAPSUELE NETWORK

A. Different From Gn

In this section, based on the proposed normlized routing
algorithm, we design a deep CapsNet architecture, named
Nomlized CapsNet (NCaps).

B. Primary Capsule layer

Fig. 6: The architecture of PrimaryCapsule

IEEE TRANSACTIONS ON IMAGE PROCESSING 6

Fig. 5: The capsule network architecture we demonstrate consists of the following key components: a front-loaded convolutional
layer for base feature extraction, four series-connected capsule blocks for multi-level feature analysis with inter-capsule
interactions, and a final category capsule layer for outputting classification decisions.

In the Normlized Capsule Rooting, capsule formation begins
with the primary capsule layer, which is responsible for
initializing the capsule units that build the foundation of the
entire capsule network.

Each Capsule contains two core components: a Pose Ma-
trix and an Activation Value. The pose matrix encodes the
geometric properties of the entity, and the activation value
indicates the probability or importance of the entity repre-
sented by the capsule being present in the current input.
Suppose P ∈ ℜW×H×C×DP and A ∈ ℜW×H×C×DA are the
pose matrix and the activation of the capsule maps. D =
{DP = 16, DA = 1} are the dimensions of the pose matrix
and activation values, respectively.

Given the input features X̂ , the pose matrix P is first gen-
erated by one layer of convolution operation, which contains
not only the existence probability of the capsule but also the
energy value. Next, we activate the pose matrix P to obtain the
activation values A of the capsule, a step that usually involves
the application of a nonlinear activation function to ensure that
the output values better represent the features of the capsule.
Finally, the activated pose matrix is spliced with the activation
values of the capsule to generate the final output, thus realizing
the mapping of the input features X̂ to the capsule features
CapF and providing an efficient feature representation for the
subsequent convolutional capsule layer. The whole process of
acquiring CapF can be expressed as equation 1:

P = fconv(X̂),A = Sigmoid(fconv(X̂)) (14)

P̂ = P ×A (15)

CapF = fcat(P̂ ,A) (16)

where P represents the pose matrix obtained by applying the
point convolution function fconv to the input X̂ , A represents
the activation values obtained by applying the sigmoid ac-
tivation function to the convolution result, P̂ represents the
enhanced pose matrix obtained by the element-wise multi-
plication of P and A, fconv represents the point convolution
operation, Sigmoid represents the sigmoid activation function,
× represents the element-wise multiplication, fcat represents
the concatenation operation, and CapF represents the capsule
feature obtained by concatenating P̂ and A.

C. Class Capsule layer

The features generated by the capsule blocks eventually flow
into the Class Capsule Layer, which is similar in design to
the Convolutional Capsule Layer, but functionally specializes
in classification tasks. In the Class Capsule Layer, instead of
applying a ”normalization-mix-fusion” strategy, the focus is
directly on the final decision - determining the class to which
the input data belongs.

D. Overall Architecture

We introduce the NCaps architecture. As shown in the Fig
5, it contains three main parts: a convolutional layer, four
capsule blocks, and a class capsule layer. Given input images
x ∈ ℜB×C×H×W ,where the B-axis represents the batch
size; the C-axis represents the feature dimension; and the
H- and W-axes represent the height and width of the image,
respectively, which are used to describe the spatial resolution
of the image. it will first go into the convolutional layer for
processing to simply extract its features to get the processed
result X̂ ∈ ℜB×C0×H×W . The preliminarily processed feature
X̂ representations are then fed into four capsule blocks for
deeper feature analysis and acquisition. Each capsule block
consists of a Primary capsule layer and two Convolutional
capsule layers for more accurate capture and representation
of capsule features CapF ∈ ℜB×H×W×N×D in the image
,where N represents the number of capsules; and where D
represents the dimension of each capsule that describes the
feature information captured and expressed by that capsule
unit.

E. Loss Function

From the activation values of each category capsule output
by the class capsule layer, we train the capsule network using
the Spread Loss function, a loss function specifically designed
for multi-categorization tasks to improve the network’s dis-
crimination between the correct categories.

The core idea of Spread Loss is that for each sample, the
network should widen the gap between the activation value
of the correct category and the next highest activation value
above a certain threshold. Specifically, let Tk be the label of
the sample belonging to the kth class (1 if it belongs to that
class, 0 otherwise), ak be the capsule activation value of the

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

TABLE I: Capsule Network Architecture

Capsule Network Architecture
A B

Input Image
small Image(32 × 32) Big Image(300 × 300)

Conv3(16 × 16) Conv(150 × 150)
Batch Normalization Batch Normalization

Relu Relu
Capsule Block-1

Primary Capsule Layer-64(8 × 8) Primary Capsule Layer-8 (75 × 75)
CTN Layer-64 CTN Layer-8
CTN Layer-64 CTN Layer-16

Batch Normalization Batch Normalization
Gelu Gelu

Capsule Block-2
Primary Capsule Layer-48(4 × 4) Primary Capsule Layer-16 (38 × 38)

CTN Layer-48 CTN Layer-8
CTN Layer-48 CTN Layer-16

Batch Normalization Batch Normalization
Gelu Gelu

Capsule Block-3
Primary Capsule Layer-48(2 × 2) Primary Capsule Layer-16 (19 × 19)

CTN Layer-48 CTN Layer-16
CTN Layer-48 CTN Layer-32

Batch Normalization Batch Normalization
Gelu Gelu

Capsule Block-4
Primary Capsule Layer-48(1 × 1) CTN Layer-32 (10 × 10)

CTN Layer-48 CTN Layer-32
CTN Layer-48 CTN Layer-32

Batch Normalization Batch Normalization
Gelu Gelu

Primary Capsule Layer FC1-1280
Class Capsule Layer FC2-1000

kth class, and m be the gradually increasing minimum interval
threshold, then Spread Loss can be defined as:

Li =
∑
k

(Tk max(0,m− (ayi − ak)))
2

where yi is the correct category for the sample i and ayi
is

the activation value for that category. This function encourages
the network to separate the activation values of the correct
category by at least m from the activation values of all the
incorrect categories.

V. EXPERIMENT AND ANALYSIS

In this section, we will carry out abundant experiments
and analysis to provide a comprehensive understanding of the
proposed method.

A. Dataset

We evaluate the proposed salient object detection network
on four public benchmarks.

The MNIST [?] dataset contains 60,000 training images and
10,000 test images, each of which is a 28x28 pixel handwritten
digit categorized into 10 categories from 0 to 9.

The SVHN [?] dataset contains house door numbers ex-
tracted from Google Street View images and is designed for
machine learning and computer vision tasks. The dataset is
divided into 10 categories (numbers 0 to 9) and includes
73,257 training images and 26,032 test images, each of which
is a 32x32 pixel color image.

The SmallNORB [?] dataset is used to evaluate 3D object
recognition algorithms and contains five categories of objects:
four-wheelers, mannequins, airplanes, trucks, and animals.
Each category contains 10 instances, each taken at different
azimuths, lighting conditions, and elevation angles, providing
a total of 24,300 grayscale images of 96x96 pixels.

CIFAR-10 [?] contains 60,000 color images of 32x32 pixels
divided into 10 categories (e.g., airplanes, cars, cats, etc.),
and the dataset consists of 50,000 training images and 10,000
test images.The CIFAR-100 [?]dataset is similar but has 100
categories of 600 images each, and the dataset is also divided
into 50,000 training images and 10,000 test images. images
and 10,000 test images, and organized in 20 super categories.

The ImageNet-1k [?] dataset is a widely used image
classification dataset containing about 1.2 million images cate-
gorized into 1000 classes. It is divided into training, validation
and test sets for training and evaluating image classification
models. Due to its large scale and diversity, many state-of-the-
art image classification models are trained and tested on this
dataset.

B. Implementation Detail

For the MNIST, FashionMNIST, smallNORB, and SVHN
datasets, the GNCaps model was developed and run using
Python 3.9 in the PyTorch version 1.12.1 environment. For
the training configuration, we chose the Adam optimizer with
an initialized learning rate of 0.001 and a batch size of 128,
as well as a configuration of the number of capsules in the
network architecture of [64, 64, 48, 48, 48, 48, 48, 48], a
configuration that ensures a reasonable number of capsule
units in each layer to optimize the parameter learning process.
To accelerate the training process, we utilize 1 NVIDIA
GeForce RTX 3090 GPU equipped with 24 GB of video
memory.

For the CIFAR-10 and CIFAR-100 datasets, we trained the
models on two different GPU platforms: the NVIDIA GeForce
RTX 3090 vs. the NVIDIA A100. on the RTX 3090, we
followed most of the training configurations similar to the
previous dataset, but with the batch size adjusted to 80. on
the A100 GPU, the model was developed and run in PyTorch
version 1.9.1 and Python 3.8, with an initial learning rate set
to 0.001 and a batch size of 128. The network architecture,
with the number of capsules, was configured in this A100 as
[128, 64, 128, 64, 64, 64, 64, 64].

For the ImageNet-1k dataset, we used parallel training on
two A100 GPUs, using the same strategy as EfficientNetV2,
including the MixUp method. The training environment is
PyTorch 1.9.1 and Python 3.8, the batch size is set to 32,
the number of capsules is [32,32,32,32,32,32,32], and the
optimizer is chosen as SGD.

1) Evaluation on MNIST and FashionMinst: Table I pro-
vides a detailed comparative analysis, clearly indicating that
the GNCaps model demonstrates superior performance in tests
on the MNIST dataset. Specifically, GNCaps achieves a low
test error rate of 0.62%, which corresponds to an accuracy
rate of up to 99.54 %. This result not only outperforms
the performance of traditional CNNs, but also stands out in

IEEE TRANSACTIONS ON IMAGE PROCESSING 8

TABLE II: Mean error (%) and accuracy (%) on MNIST. -
represents no result released from the original paper or related
papers. The best method is marked by bold.

Method Mean error Accuracy
MNIST MNIST

GNCaps 0.69 99.54
ResCaps [?] 0.72 99.45

Baseline CNN [?] 0.8 99.22
BCN [?] 2.5 97.50

Dynamic Rooting [?] 0.77 99.23
G-Caps [?] 1.58 98.42

Matrix-CapsNet with EM routing [?] 0.8 99.20
Aff-Caps [?] 0.77 99.23

U-Routing [?] 0.8 -
DA-CapsNet [?] - 99.53
AA-CapsNet [?] - 99.34
CapProNet [?] - 94.98

comparison with similar capsule network models, highlighting
the significant advantages of GNCaps in handling handwritten
digit recognition tasks.

On the FashionMNIST dataset, our model also demonstrates
excellent performance, achieving 92.34% accuracy with a
reduced mean error of 0.69%, which outperforms classical
convolutional neural network models, such as ResNet-18 and
VGG16, demonstrating the effectiveness of our approach in
dealing with the more complex and diverse task of apparel
image classification and the Superiority.

The data in Table II clearly show that our method signifi-
cantly outperforms the other technical solutions compared on
the SVHN dataset. Specifically, our model achieves 96.01%
in terms of accuracy and demonstrates a significant advantage
in terms of the mean error metric, which highlights the strong
performance and robustness of our method in handling the task
of street view house digit recognition.

TABLE III: Mean error (%) and accuracy (%) on SVHN.
NCaps means our entire framework consisting of 4 blocks. -
represents no result released from the original paper or related
papers. The best method is marked by bold.

Method Mean error Accuracy
SVHN SVHN

NCaps 0.72 96.01
Baseline CNN [?] 0.8 91.28
Efficient-Caps [?] 2.5 93.12

EM-Caps [?] - 87.42
DA-Caps [?] - 94.82

CapProNet [?] 0.77 93.41
AA-CapsNet [?] - 92.23
AR-CapsNet [?] - 85.98

2) Evaluation on SVHN and SmallNORB: In Table III, the
performance comparison for the SmallNORB dataset is partic-
ularly outstanding, and the GNCaps model exhibits an average
error rate of 0.89%, which not only breaks the existing record,
but also ranks the lowest among all the reference methods,
which is a strong proof of the leading edge of GNCaps in the
task of processing three-dimensional object recognition and
classification.The SmallNORB dataset is well known for the
complexity and diversity of its three-dimensional images. The
SmallNORB dataset is well known for the complexity and

TABLE IV: Mean error (%) on smallNORB. The superior
approach is highlighted in bold.

Method Mean error

NCaps 0.89
ResCaps [?] 0.91

Baseline CNN [?] 5.2
FREM [?] 2.20

Dynamic Rooting [9] 2.70
STAR-Caps [?] 1.80

Matrix-CapsNet with EM routing [?] 1.8
VB-Rooting [?] 1.60
U-Routing [?] 2.20

Efcient-CapsNet [?] 2.54

diversity of its stereo images, and the excellent performance of
GNCaps on this dataset further validates its power in capturing
and resolving spatial features of objects.

TABLE V: Mean error (%) and accuracy (%) on CIFAR-10. -
represents no result released from the original paper or related
papers. The best method is marked by bold.

Method Mean error Accuracy
cifar-10 cifar-10

NCaps 0.74 92.83
ResCaps [?] 1.14 92.38

OrthCaps-D [?] - 86.84
OrthCaps-S [?] - 90.56

Baseline CNN [?] 19.2 -
EM-Caps [?] 11.6 82.20
DA-Caps [?] - 85.47

CapProNet [?] - 80.84
Self-Routing [?] 7.86 92.14
AA-CapsNet [?] - 71.60
AR-CapsNet [?] - 85.98

MobileNetV2 G32 [?] - 91.87
Radix VGG20 [?] - 92.20

kMobileNet V3 Large 16ch [?] - 92.80

3) Evaluation on Cifar-10/100: In the comparative analysis
in Table IV, our GNCaps model achieves 92.83% accuracy
on the CIFAR-10 dataset, a result that establishes our new
benchmark in the field (state-of-the-art, SOTA). This not only
highlights the significant advantages of GNCaps in handling
difficult image classification tasks, but also further validates
its superior performance in parsing the rich and diverse image
features in the CIFAR-10 dataset, which makes it a leader
among similar capsule network models.

On the CIFAR-100 dataset, our model achieves an accuracy
of 63.38% while keeping the average error at 15.8%. This
result reflects the effectiveness of our approach in handling
this more challenging multi-category classification task, where
the fine-grained categories contained in the CIFAR-100 dataset
place higher demands on the model’s recognition ability and
generalization performance.

4) Evaluation on ImageNet: On the ImageNet dataset,
our model demonstrates excellent performance with a Top-1
accuracy of 71% and a Top-5 accuracy of 91% .The training
loss is 2.9 while the testing loss is 1.69 as shown in the
figure8. This achievement not only highlights the power of
our model in handling large-scale image classification tasks,
but also demonstrates the robust performance in complex

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

visual recognition challenges. As shown in the Fig 7, these
results visualize the effectiveness and competitiveness of our
approach.

Fig. 7: NFMCaps in ImageNet -1k per Epoch top1and top5
accuracy.

Fig. 8: NFMCaps in ImageNet -1k Losses per Epoch training
and testing.

C. Ablation Study

In this section, we will conduct several experiment to ana-
lyze the role of each component in our proposed framework.

1) Number of capsules: In order to gain insight into how
the number of capsules affects the model performance, we ex-
ecuted an exhaustive sequence of experiments on the CIFAR-
10 dataset, please refer to Table 5 for the detailed results.By
comparing and analyzing the performance on CIFAR-10, we
found that the model demonstrated optimal performance when
the capsule network architecture of the GNCaps model was
set to 128 and 64 capsules for the first and second block
settings, respectively, and 32 capsules for each of the third and
fourth blocks set to 64 capsules, the model exhibits optimal
performance.

2) Routing Strategy: Exploring the proposed
Normalization-Mix-Fusion (NMF) strategy on the CIFAR-10
dataset. In the ablation experiments conducted on the NMF
(Normalization-Mix-Fusion) strategy, we separately examined
the impact of each component on the model performance.
It was found that the model achieved 91.92% accuracy on

TABLE VI: Experimental results with different Number of
capsules on CIFAR-10 dataset.

Method cifar-10
Mean error (%) Accuracy (%)

[64, 64, 48, 48, 48, 48, 32, 32] 1.33 92.37
[64, 64, 48, 48, 48, 48, 48, 48] 1.22 92.42
[128, 64, 128, 64, 64, 64, 64, 64] 1.18 92.71
[128, 64, 128, 64, 128, 64, 64, 64] 1.16 92.74
[64, 128, 64, 128, 64, 64, 64, 64] 1.03 92.83

the CIFAR-10 dataset when only the normalization strategy
was used, while when the normalization strategy was used
in conjunction with the fusion (NF) strategy, the accuracy
slightly decreased to 91.83%, and if the normalization
strategy was paired with the mixing (NM) strategy, the model
accuracy was improved to 92.29%. These results emphasize
the important role of hybrid strategies in enhancing model
performance and generalization. In subsequent experiments,

TABLE VII: Experimental results of different NFM strategies
on the CIFAR-10 dataset.

Normlization Mix Fusion Mean error ↓ Accuracy ↑

✓ 1.33 92.28
✓ ✓ 1.30 92.30
✓ ✓ 1.55 91.83
✓ ✓ ✓ 1.22 92.42

TABLE VIII: Experimental results with different combination
methods of NFM on CIFAR-10 dataset.

Description Mean error ↓ Accuracy ↑

Fusion +Mix +Normlization 3.3 87.68
Normlization + Mix + Fusion 1.03 92.83

we delved into the effect of the timing of the execution of the
Fusion strategy in the NMF strategy on the performance of
the model. When the Fusion strategy was placed before the
Normalization and Mix strategies, i.e., in the order of FMN,
we observed a significant decrease in the model performance,
with an accuracy of only 87.68%. This result mainly stems
from the failure of the capsules to be in a uniform distribution
during fusion, coupled with the secondary activation effect
of the capsules, both of which together lead to a significant
degradation in model performance. This suggests that the
execution order of the strategy is crucial to the effectiveness
of the capsule network, and an improper order will interfere
with the coordinated work among the capsules, which in turn
affects the overall performance of the model.

D. Comparison with EM Routing

We set the Block number to 1 constituting NFMCaps-2B
with EM-Routing on the CIFAR-10 dataset for comparison.
NFMCaps have the best inference speed and accuracy under
the equivalent condition of having only one Block.

VI. CONCLUSIONS

In this study, an innovative N-Capsule Routing (N-Caps)
method is proposed to address the computationally intensive

IEEE TRANSACTIONS ON IMAGE PROCESSING 10

Model Memory (G) Parameter (M) Time (ms) Error (%) Accuracy (%)
NFMCaps-2B 5.4 16.4 3.2 0.91 88.52

ResCaps-2B [?] 4.8 16.4 4.2 1.14 88.28
EM-Caps [?] 23.70 0.02 5.3 11.6 82.20

ResNet-101 [?] 9.84 42.51 12.1 6.43 86.65

TABLE IX: Comparison of different models based on Mem-
ory, Parameters, Time, Error, and Accuracy.

problem of capsule networks, which significantly reduces the
computational burden by introducing capsule fusion matrices
instead of the traditional weight matrices, while maintaining
the part-whole relationship modeling capability unique to
capsule networks. Experimental results on several datasets
(e.g., SVHN, SmallNORB, CIFAR-10/100, ImageNet) validate
the efficiency and performance advantages of the GN-Caps
method.The proposed GN-Caps method provides a strong
support for the wide application and efficiency optimization
of capsule networks, and demonstrates the capsule network’s
wider use in the field of computer vision The potential of the
GN-Caps method.

ACKNOWLEDGMENT

