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a b s t r a c t 

In this paper, we present a novel salient object detection method, efficiently combining Laplacian sparse 

subspace clustering (LSSC) and unified low-rank representation (ULRR). Unlike traditional low-rank matrix 

recovery (LRMR) based saliency detection methods which mainly extract saliency from pixels or super- 

pixels, our method advocates the saliency detection on the super-pixel clusters generated by LSSC. By do- 

ing so, our method succeeds in extracting large-size salient objects from cluttered backgrounds, against 

the detection of small-size salient objects from simple backgrounds obtained by most existing work. The 

entire algorithm is carried out in two stages: region clustering and cluster saliency detection. In the first 

stage, the input image is segmented into many super-pixels, and on top of it, they are further grouped 

into different clusters by using LSSC. Each cluster contains multiple super-pixels having similar features 

(e.g., colors and intensities), and may correspond to a part of a salient object in the foreground or a local 

region in the background. In the second stage, we formulate the saliency detection of each super-pixel 

cluster as a unified low-rankness and sparsity pursuit problem using a ULRR model, which integrates a 

Laplacian regularization term with respect to the sparse error matrix into the traditional low-rank rep- 

resentation (LRR) model. The whole model is based on a sensible cluster-consistency assumption that 

the spatially adjacent super-pixels within the same cluster should have similar saliency values, similar 

representation coefficients as well as similar reconstruction errors. In addition, we construct a primi- 

tive dictionary for the ULRR model in terms of the local-global color contrast of each super-pixel. On 

top of it, a global saliency measure covering the representation coefficients and a local saliency measure 

considering the sparse reconstruction errors are jointly employed to define the final saliency measure. 

Comprehensive experiments over diverse publicly available benchmark data sets demonstrate the validity 

of the proposed method. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Saliency detection, which is closely related to the selective pro-

essing in human visual system, aims to locate eye fixations or in-

eresting areas in images. Such a detector that mimics the human

isual attention mechanism has been served as a foundation for

any computer vision applications including object classification

 Peng and Shao, 2015 ), image segmentation ( Fouquier et al., 2012 ),

mage retrieval ( Chen and Cheng, 2009 ), image fusion ( Han et al.,

013 ), and image thumbnailing ( Marchesotti et al., 2009 ). 

Most of existing saliency detection works focus on one of the

ollowing two specific tasks ( Li and Hou, 2014 ): fixation prediction
∗ Corresponding author. Northumbria University, Pandon Building, NE2 1XE, New- 

astle upon Tyne, UK. 
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077-3142/© 2017 Elsevier Inc. All rights reserved. 
r salient object detection. The goal of the former is to compute a

robabilistic map of an image to simulate the eye movement be-

aviors of human, while the latter is expected to generate a map

hat matches the annotated salient object mask. In this paper, we

ill concentrate on the latter, especially on the detection of large-

ize salient objects from a cluttered scene, because it can deal with

ore practical applications. 

In the past few years, low-rank matrix recovery (LRMR) tech-

iques, such as low rank representation (LRR) ( Liu and Lin, 2013 ),

obust principal component analysis (RPCA) ( Cades and Li, 2011 )

nd matrix completion (MC) ( Cades and Tao, 2009 ), were pre-

ented to recover low-rank structures from the corrupted data with

parse but strong noise. Such algorithms have attracted significant

ttentions in the field of computer vision and image processing

ue to their super capability to facilitate applications including im-

ge segmentation ( Cheng and Liu, 2011 ), object tracking ( Zhang

nd Liu, 2014 ), image classification ( Zhang and Ghanem, 2013 ), im-

http://dx.doi.org/10.1016/j.cviu.2017.04.015
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2017.04.015&domain=pdf
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Fig. 1. Saliency detection results by different LRMR based methods. (a) Original images; (b) SR_RPCA ( Yan and Zhu, 2010 ); (c) LRR ( Lang and Liu, 2012 ); (d) ULR ( Shen and 

Wu, 2012 ); (e) Proposed; (f) Ground truth. 
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age fusion ( Wan et al., 2013 ), and so on. Not surprisingly, these

LRMR techniques have recently been applied to saliency detection

( Yan and Zhu, 2010 ; Lang and Liu, 2012 ; Shen and Wu, 2012 ; Rigas

et al., 2015 ; Liu et al., 2015 ). 

Most of the LRMR methods presume that the salient objects

only occupy a few parts of the whole image and/or the features

of the backgrounds lie in a low-dimensional subspace ( Shen and

Wu, 2012 ). Therefore, they first employed some LRMR techniques

to decompose the feature matrix, constructed by the local patches

from the input image, into a low-rank part plus a sparse noise part

(or reconstruction error). Subsequently, they employed the sparse

reconstruction errors to indicate the saliency of the local image

patches and thus obtained the salient objects or regions within the

input image. In general, these methods can well detect salient ob-

jects with small size and simple backgrounds, as illustrated in the

first row of Fig. 1 . 

However, such an assumption is no longer reasonable when the

input image contains large-size salient objects with complex back-

grounds, inevitably giving rise to unsatisfactory results if an LRMR

method is straightforwardly employed. For example, as illustrated

in the second row of Fig. 1 , the traditional LRMR based algorithms

mentioned here could not produce uniform saliency values for the

whole object when large-size salient objects appear on the image.

In addition, as shown in the third row of Fig. 1 , most of them mis-

takenly label a part of the background as the salient region in the

case that the backgrounds contain multiple texture regions (e.g.,

wires and poles). 

Aiming to solve the two problems mentioned above, we present

a new method based on the Laplacian sparse subspace cluster-

ing (LSSC) ( Xie et al., 2013 ) and a unified low-rank represen-

tation (ULRR). As can be seen in Fig. 2 , the proposed method

consists of region clustering and cluster saliency detection. More

specifically, the input image is first segmented into many super-

pixels, and on top of them, different clusters are formed by group-

ing them using LSSC. Each cluster contains multiple super-pixels

with similar features (e.g., colors and intensities), and may cor-

respond to a part of a salient object in the foreground or a

local region in the background. Thus, the detection of salient
bjects can be converted to the detection of different salient

lusters. 

At the later stage, we apply the ULRR, i.e., by integrating a

aplacian regularization term with respect to the sparse error ma-

rix into the traditional LRR model ( Liu and Lin, 2013 ), on the fea-

ure matrix of each cluster. For doing so, a primitive saliency dic-

ionary is first constructed based on the local-global color con-

rast of each super-pixel. Afterwards, two saliency measures are

onstructed, in which one is based on the ULRR coefficients for

he global saliency detection with respect to the entire image

hile the other one is based on the sparse reconstruction errors

or the local saliency detection with respect to each cluster. Fi-

ally, the saliency maps derived by the two measures are fused

nd reinforced into a full-resolution saliency map. Experimental

esults demonstrate the superiority of the proposed method over

ome state-of-the-art methods, including traditional LRMR based

nd clustering based methods. 

In summary, the main contributions of this paper are as fol-

ows: 

1. We formulate the saliency detection of each super-pixel

cluster as a low-rankness and sparsity pursuit problem by

using a unified low-rank representation (ULRR) model, i.e.,

by integrating a Laplacian regularization with respect to the

sparse error matrix into the traditional LRR model ( Liu and

Lin, 2013 ). This is based on a sensible cluster-consistency as-

sumption that the spatially adjacent super-pixels within the

same cluster should have similar saliency values and thus

have similar representation coefficients and reconstruction

errors. As a result, the whole salient objects are expected to

be uniformly highlighted and some isolated regions in the

detected result are also expected to be suppressed. 

2. We construct a primitive saliency dictionary for the ULRR

decomposition on the feature matrices of super-pixel clus-

ters. This clearly differs from the traditional LRR based

saliency detection method ( Lang and Liu, 2012 ), in which the

data themselves are directly served as the dictionary. 
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Fig. 2. Diagram of the proposed method. 
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3. We construct two saliency measures by using the ULRR de-

composition coefficients and sparse reconstruction errors, 

respectively. The former is a global cluster-level measure

for detecting large objects, while the latter is a local super-

pixel-level measure for the detection of small objects or lo-

cal regions within a large object. The two measures are com-

bined to construct the final saliency measure, thus enabling

us to effectively detect both large and small salient objects. 

The rest of this paper is organized as follows: Section 2 reviews

he related work. In Section 3 , the proposed method is described in

etail. Experimental results as well as some insightful conclusions

re given in Sections 4 and 5 , respectively. 

. Related work 

In the past decade, numerous visual saliency detection methods

ave been presented, which could be generally classified into two

ategories ( Xie et al., 2013 ): top-down and bottom-up. The former

epends on the task at hand whereas the latter is driven by the

nput image tending to be application agnostic. Here, we limit our

eview to the bottom-up visual saliency detection methods only

ue to their relevance to our work. 

Many earlier bottom-up visual saliency detection methods ( Itti

t al., 1998 ; Ma and Zhang, 2003 ; Harel et al., 2006 ; Bruce and

sotsos, 2005 ; Hou and Zhang, 2007 ; Guo and Zhang, 2010 ; Guo

t al., 2008 ; Li and Martin, 2013 ; Zhang and Han, 2016 ) were pre-

ented to simulate the eye movement or fixation behaviors of hu-

an. For example, as a pioneer, Itti et al. (1998 ) derived a bottom-

p visual saliency map using center-surround differences across

ulti-scale image features. In our previous work ( Zhang and Han,

016 ), we applied deep learning for co-saliency detection, aiming

t extracting common salient regions in multiple related images. 

In recent years, the research in this field evolves into a new

hase. Instead of predicting a few fixation points in an image, new

aliency detection methods uniformly highlight the entire salient

egion in the foreground ( Achanta and Hemami, 2009 ; Cheng and

itra, 2015 ; Gong and Tao, 2015 ; Wang et al., 2016 ; Chakraborty

nd Mitra, 2016 ; Liu and Han, 2016 ; Kim et al., 2016 ; Wei and Wen,

012 ). For example, Achanta and Hemami (2009 ) first presented a

requency-tuned based salient region detection method that out-

utted full resolution saliency maps with well-defined boundaries

f salient objects by substantially retaining more spatial frequency

ontents from the original image. Most of the previous methods

entioned above rely on the assumptions or priors on the objects.

n Wei and Wen (2012 ), the authors tackled the problem from a

ifferent viewpoint: they focused more on the background rather

han the object. Precisely, they exploited two common priors about

ackgrounds in natural images, i.e., boundary and connectivity pri-

rs, to provide more clues for the salient object detection. 

More recently, some saliency or salient object detection meth-

ds were proposed based on LRMR ( Yan and Zhu, 2010 ; Lang and
iu, 2012 ; Shen and Wu, 2012 ; Rigas et al., 2015 ; Liu et al., 2015 ).

or example, in ( Yan and Zhu, 2010 ), Yan et al. applied the low-

ank sparsity matrix decomposition (i.e., RPCA Cades and Li, 2011 )

o the visual saliency detection task, and presented a saliency

stimation model for object detection, which directly extracted

he saliency information from the sparse matrix obtained by

PCA decomposition. In Lang and Liu (2012 ), a multi-task sparsity

ursuit was presented to integrate multiple types of features for

mage saliency detection. Given an image described by multi-view

eatures, its saliency map is inferred by seeking the consistently

parse elements from the joint low-rank and sparse decomposition

f multiple-feature matrices. In Shen and Wu (2012 ), a unified

alient object detection model was proposed to incorporate the

raditional low-level features with higher-level guidance, in which

n image was represented as a low-rank matrix plus sparse noise

n a certain feature space. These methods generally work appropri-

tely for the salient objects of small size. However, when detecting

he salient objects of large size, these methods tend to only pro-

uce higher saliency values on the borders of the salient objects. 

. The proposed salient object detection method 

As shown in Fig. 2 , the proposed salient object detection

ethod mainly consists of two parts: (1) Super-pixel segmentation

nd clustering; (2) Super-pixel cluster saliency detection, each be-

ng elaborated in the following subsections. 

.1. Super-pixel segmentation and clustering 

This part can be further decomposed into: (1) Super-pixel seg-

entation using simple linear iterative clustering (SLIC); (2) Super-

ixel clustering based on Laplacian sparse subspace clustering

LSSC); (3) Feature extraction. 

.1.1. Super-pixel segmentation 

Because of its high computation efficiency and low memory

equirement, a simple iterative super-pixel clustering (SLIC) algo-

ithm ( Achanta and Shaji, 2012 ) is adopted to achieve the super-

ixel segmentation in this paper. Specifically, given an input image

 , a set of super-pixels { s p i | i = 1 , 2 , ..., N } can be obtained by us-

ng SLIC, where N denotes the total number of super-pixels and is

mpirically set to 150 in this paper. 

.1.2. Super-pixel clustering 

Generally, a super-pixel only denotes a regional atom without

ny perceptual meaning. As a result, the object and the background

an be represented as a group of super-pixels, which is illustrated

n Fig. 3 (b). When directly performing the saliency detection onto

he super-pixels, some super-pixels within the salient object would

e mistakenly labeled as non-salient ones, while some super-pixels

rom the background would be falsely marked as salient ones. This
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Fig. 3. Super-pixel segmentation and cluster results. (a) Original image; (b) Super-pixel segmentation result; (c) Cluster result. 
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is more likely to occur in the images where the large-size salient

objects are coupled with complex backgrounds. To solve this prob-

lem, in the proposed method, we will group the super-pixels into

different clusters, and perform the saliency detection on the super-

pixel clusters rather than on the super-pixels. As a result, such a

scheme is able to depress the saliency noise caused by the com-

plex background. 

Regarding the cluster algorithm, we directly use the method re-

ported by Xie et al. (2013 ), which fed the mid visual information

via super-pixels into a Laplacian sparse subspace clustering (LSSC)

method. To some extent, LSSC method can be considered as an ex-

tension of the sparse subspace clustering (SSC) ( Elhamifar and Vi-

dal, 2013 ) by introducing a Laplacian regularization term, which

further enforces similar super-pixels to be clustered into the same

group. More details about LSSC can be found in Appendix A . 

Given a set of super-pixels { s p i | i = 1 , 2 , ..., N } from an input im-

age, a set of super-pixel clusters { C k | k = 1 , 2 , ..., K } are obtained us-

ing LSSC ( Xie et al., 2013 ), where K denotes the total number of

clusters and will be discussed in the experimental part. Here, each

cluster C k contains N k super-pixels, i.e., C k = { s p k, j | j = 1 , 2 , ..., N k } .
Fig. 3 shows an example of super-pixel segmentation on an image

and its clustering. As shown in Fig. 3 (c), the salient object and the

background are segmented into only a fewer number of clusters,

thereby facilitating the complete detection of salient object and the

suppression of noise from the background. 

3.1.3. Feature extraction 

Given an image I and a set of its super-pixel clusters

{ C k | k = 1 , 2 , ..., K } , the feature extraction (or feature matrix con-

struction) for each super-pixel cluster C k is described as follows: 

(1) For each pixel p i in the image I , construct its feature vector

f i ∈ R d of dimension d = 53 as suggested in Shen and Wu

(2012 ) by: (I) Color feature v 1 ,i = [ r i , g i , b i , h i , s i ] 
T ∈ R 5 , where

r i , g i , and b i denote the red, green and blue color chan-

nel components of pixel p i , respectively. h i and s i denote its

hue and saturation components. (II) Edge feature v 2, i ∈ R 12 ,

which is constituted by the absolute values of the outputs

of a set of steerable pyramid filters with 3 scales and 4 di-

rections for pixel p i . (III) Texture feature v 3, i ∈ R 36 , which is

constituted by the absolute values of the outputs of a set of

Gabor filters with 3 scales and 12 directions for the current

pixel. Thus the feature vector f i is constructed by vertically

stacking the vectors v 1, i , v 2, i , and v 3, i , i.e., 

f i = 

[ 

v 1 ,i 
v 2 ,i 

] 

∈ R 

53 . (1)

v 3 ,i r  
(2) Construct the feature vector x j ∈ R d for each super-pixel sp j 
by averaging all the feature vectors of the pixels contained

in the current super-pixel, i.e., 

x j = 

( 

1 

N s p j 

∑ 

p i ∈ s p j 
f i 

) 

, (2)

where N s p j denotes the number of pixels within the super-

pixel sp j . 

(3) Construct the feature matrix X k ∈ R d×N k by using all of the

feature vectors of the super-pixels grouped into the cluster

C k , i.e., 

X k = [ x k, 1 , x k, 2 , ..., x k, N k 
] , (3)

here x k, j denotes the feature vector of the j -th super-pixel sp k, j 

n the cluster C k . And N k refers to the number of super-pixels in

he cluster C k . 

.2. Super-pixel cluster saliency detection based on ULRR 

As shown in Fig. 3 , each super-pixel cluster corresponds to a

art of an object in the foreground or a local region with simi-

ar textures in the background. Hence, the salient object detection

n an image may be achieved via the saliency detection of different

uper-pixel clusters, which is similar to that in Xie et al. (2013 ). But

ifferently, in the proposed method, we formulate the saliency de-

ection of different super-pixel clusters as a low rankness and spar-

ity pursuit problem with the ULRR decomposition rather than un-

er a Bayesian framework ( Xie et al., 2013 ) considering the strong

orrelation among the super-pixels contained in each cluster. 

In theory, the feature matrix X k obtained in Section 3.1 -C for

ach cluster C k has the intrinsic property of low rankness. How-

ver, it may be partially corrupted by some errors or noise in the

eal application. Given a dictionary D k ∈ R d×M k with M k prototype

toms, the feature matrix X k of the super-pixel cluster C k may be

ecomposed into a low-rank part plus a sparse error part ( Liu and

in, 2013 ), i.e., 

 k = D k Z k + E k , k = 1 , 2 , ..., K, (4)

here D k Z k denotes the "intrinsic" low-rank part contained in the

atrix X k . Z k ∈ R M k ×N k refers to the sought after representation co-

fficient matrix, which is accordingly assumed to have the property

f low rankness in this paper. E k ∈ R d×N k represents the error or

oise part and is assumed to have sparse columns for dealing with

he subsequent saliency detection of each super-pixel contained in

he cluster C k . 

Eventually, for each super-pixel cluster C k , its corresponding

epresentation coefficient matrix Z and error matrix E can be
k k 
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k k 
btained via solving the below low-rank representation (LRR) ( Liu

nd Lin, 2013 ) problem, respectively: 

in 

Z k , E k 
|| Z k | | ∗ + λk || E k | | 2 , 1 , s.t. X k = D k Z k + E k , k = 1 , ..., K, (5)

here ‖ Z k ‖ ∗ denotes the nuclear norm of the matrix Z k and is

efined as the sum of the singular values of the matrix Z k . It

s a convex relaxation of the rank function ( Liu and Lin, 2013 ).

| E k || 2, 1 denotes the l 2, 1 -norm of the matrix E k and is defined as

 E k ‖ 2 , 1 = 
∑ 

j 

√ ∑ 

i ( E k (i, j) ) 2 . E k ( i, j ) is the ( i, j )-th entry in the matrix E k .

arameter λk > 0 is used to balance the effects of the two parts. 

In theory, it might be more reasonable to adaptively con-

truct a local dictionary for each cluster due to large feature vari-

tions across the clusters. However, using different dictionaries

 D k | k = 1 , 2 , .., K } in Eq. (5) will give rise to the fact that the repre-

entation coefficients and error matrices { Z k , E k | k = 1 , 2 , ..., K } are

btained under different conditions. This will affect the fairness of

he subsequent saliency measure for different super-pixel clusters

r super-pixels. Therefore, we will prefer a global dictionary D ∈
 

d × N in the proposed method, which will be constructed by the

eature data { x j | j = 1 , 2 , ..., N } of all of the super-pixels in the in-

ut image. 

Given a dictionary, each cluster will be well represented by

olving Eq. (5) independently. However, such a scheme neglects

he interrelationships among the spatially adjacent super-pixels ( Li

nd Martin, 2013 ), thus giving rise to isolated regions in the de-

ected result. In practice, the super-pixels that are spatially adja-

ent or have similar features are likely to have similar saliency

alues ( Li and Martin, 2013 ). Therefore, it may be more reason-

ble to group those super-pixels into the same cluster. Accordingly,

hese super-pixels in the same cluster will have similar represen-

ation coefficients and reconstruction errors. This useful observa-

ion inspires us to involve such a cluster-consistency prior into our

roposed method, thereby ensuring the completeness of the seg-

ented salient object. This idea can be implemented by integrating

 Laplacian regularization term with respect to the reconstruction

rror into the LRR model in addition to the low-rankness constraint

n the representation matrix. 

The problem in Eq. (5) is thus amended to be the following uni-

ed LRR (ULRR) one 

min 

Z 1 ,..., Z k 
E 1 ,..., E k 

K ∑ 

k =1 

|| Z k | | ∗ + λ1 || E | | 2 , 1 + λ2 t r( EL E 

T ) , s.t . X k = D Z k + E k ,

k = 1 , ..., K, (6)

here E is formed by horizontally concatenating E 1 , E 2 , ..., E K to-

ether along the row, i.e., E = [ E 1 , E 2 , ..., E K ] ∈ R d×N . N = 

∑ K 
k =1 N k 

enotes the total number of super-pixels contained in the input

mage. λ1 and λ2 are two positive trade-off parameters and are

xperimentally set to 0.01 and 0.1, respectively. The Laplacian reg-

larization term λ2 tr ( ELE 

T ) is computed by 

r( EL E 

T ) = 

1 

2 

N ∑ 

i, j 

∥∥e i − e j 
∥∥2 

2 
ω i j (7) 

In Eq. (7) , e i denotes the i -th column of the matrix E . The

eight ω ij refers to the similarity between the i -th and j -th super-

ixels and is defined as 

 i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

exp 

−‖ 

p i −p j ‖ 

2 

2 

2 σ2 
p · exp 

−‖ 

x i −x j ‖ 

2 

2 

2 σ2 
f , if s i , s j belong to the same 

cluster 
0 , otherwise 

(8) 

here p i , p j ∈ R 2 denote the center positions of the super-pixels

p i and sp j . x i , x j ∈ R m are their corresponding feature vectors.
p and σ f are two scaling parameters, and are experimentally set

o 0.5 and 

√ 

0 . 5 , respectively. Based on these weights, an affinity

atrix W ∈ R N × N with its ( i, j )-th entry W i, j = ω i j and a diago-

al degree matrix H ∈ R N × N with its i -th diagonal element H i,i =
 

j W i, j are constructed. The Laplacian matrix L is thus defined as

 = H − W . 

As discussed above, the low-rank part DZ k in Eq. (6) con-

ains the "intrinsic" characteristics of each super-pixel cluster

 k . The saliency or difference among different super-pixel clus-

ers { C k | k = 1 , 2 , ..., K } could be achieved by comparing their

ow-rank parts { D Z k | k = 1 , 2 , ..., K } , i.e., their ULRR coefficients

 Z k | k = 1 , 2 , ..., K } . In addition, the minimization of l 2, 1 norm en-

bles the columns of E to be near to zeros (i.e., have sparse

olumns). Here, each column in the matrix E corresponds to a

uper-pixel, indicating that the larger (smaller) the magnitude the

ore salient (non-salient) the super-pixel is ( Lang and Liu, 2012 ).

herefore, in the proposed method, we will jointly employ the rep-

esentation coefficients { Z k | k = 1 , 2 , ..., K } , and the reconstruction

rrors E to construct the saliency map. 

To sum up, the proposed saliency detection method for super-

ixel clusters in this subsection consists of four parts: (1) Pri-

ary saliency dictionary construction; (2) ULRR problem solving;

3) Saliency measure by jointly optimizing the representation co-

fficients and reconstruction errors; (4) Saliency map fusion and

efinement. In the following contents, we will describe each part

n detail. 

.2.1. Primitive saliency dictionary construction 

In this part, we will employ the feature data { x j | j = 1 , 2 , ..., N }
f all the super-pixels in the input image to construct the dictio-

ary D . However, instead of directly employing the feature data

s the dictionary, we adopt a two-step approach, where the first

tep is to coarsely measure the saliency of each super-pixel. Next, a

rimitive saliency dictionary is constructed with the aim to better

xploit the ULRR coefficients in the subsequent saliency measure

or each super-pixel cluster. In the primitive saliency dictionary,

ach feature data x j will be still employed as a dictionary atom (or

 column in the dictionary D ), but its position (or column number)

ill be rearranged in terms of its initial saliency score. 

For that, given a set of super-pixels { s p i | i = 1 , 2 , ..., N } , their ini-

ial saliency scores { C S i | i = 1 , 2 , ..., N } are first obtained by using

 local-global color contrast based method ( Perazzi and Krahen-

ull, 2012 ) in this paper because of its efficiency. Then a set of new

umbers { s i | i = 1 , 2 , ..., N; 1 ≤ s i ≤ N;C S 1 ≥ C S 2 ≥ · · · ≥ C S N } are ob- 

ained according to the initial saliency values. The global dictionary

 is thus constructed as 

 = [ x s 1 , x s 2 , ..., x s N ] , (9)

here x s i ( i = 1 , 2 , ..., N) denotes the feature data of the s i -th

uper-pixel s p s i in the input image. 

As shown in Fig. 4 , the atoms in the dictionary D can be divided

nto three groups: (1) the first ρ atoms from the feature data of the

otential foreground super-pixels; (2) the last ρ atoms from the

eature data of the potential background super-pixels; (3) the rest

toms from the feature data of uncertain super-pixels. ρ is empir-

cally set to 20 in this paper. 

.2.2. ULRR problem solving 

Solving the problem in Eq. (6) equals a convex optimization, for

hich there are various methods available. In this paper, we first

onvert it to the following equivalent problem 

min 

Z 1 ,..., Z k 
E 1 ,..., E k 

K ∑ 

k =1 

|| J k | | ∗ + λ1 || E | | 2 , 1 + λ2 tr( EL E 

T ) , s.t. X k = D Z k + E k , 

Z = J , k = 1 , ..., K. (10) 
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Algorithm 1. 

Unified low-rank representation (ULRR) algorithm using IALM. 

Input : Data matrices { X k }, dictionary D , and parameter λ. 

Output : Z k ( k = 1 , 2 , ..., K) and E . 

Initialized : { Z k = 0 , J k = 0 , E k = 0 , Y k = 0 , W k = 0 | k = 1 , 2 , ..., K } , μ = 10 −6 , ε = 10 −8 , φ = 1 . 1 , μmax = 10 6 . 

While not converged do 

(1) Fix the others and update J 1 , J 2 ,..., J K using Eq. (B2) ; 

(2) Fix the others and update Z 1 , Z 2 ,..., Z K using Eq. (B4) ; 

(3) Fix the others and update E using Eq. (B8) ; 

(4) Update the multipliers Y k and W k ( k = 1 , 2 , ..., K): 

Y j+1 

k 
= Y j 

k 
+ μ j ( X k − DZ j+1 

k 
− E j+1 

k 
) , W 

j+1 

k 
= W 

j 

k 
+ μ j ( Z j+1 

k 
− J j+1 

k 
) ; 

(5) Update μ: 

μ j+1 = min ( μ j φ, μmax ) ; 
(6) Check the convergence conditions: 

max 
k 

‖ X k − DZ j+1 

k 
− E j+1 

k 
‖ ∞ < ε and max 

k 
‖ Z j+1 

k 
− J j+1 

k 
‖ ∞ < ε; 

where ‖ · ‖ ∞ denotes the l ∞ -norm of a matrix and is defined as the maximum absolute value of the entries in a matrix. 

end while 

Fig. 4. Primitive saliency dictionary. 
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To solve it, a linearized alternating direction method with adap-

tive penalty (LADMAP) ( Lin et al., 2011 ; Zhang et al., 2013 ) is

adopted, which requires the minimization of the following aug-

mented Lagrangian function: 

L = λ1 || E | | 2 , 1 + λ2 tr( EL E 

T ) + 

K ∑ 

k =1 

(|| J k | | ∗ + 〈 Y k , X k − D Z k − E k 〉 

+ 〈 W k , Z k −J k 〉 + 

μ

2 

|| X k −D Z k −E k || 2 F + 

μ

2 

|| Z k − J k || 2 F ) , (11)

where Y 1 , ..., Y K and W 1 , ..., W K are Lagrange multipliers used to

remove the equality constraint in Eq. (10) . μ > 0 is a penalty pa-

rameter. 〈 A, B 〉 denotes the Euclidean inner product of matrices A

and B . Apparently, this problem for now becomes unconstrained

and can be thus minimized with respect to E k (or E ), X k and J k 
( k = 1 , 2 , ..., K), respectively. Algorithm 1 summarizes the calcula-

tions of the ULRR. More details can be seen in Appendix B . 

3.2.3. Saliency measure 

In this part, we will propose two saliency measures. One is

based on the ULRR coefficients for the saliency detection of each

super-pixel cluster, and the other is based on the reconstruction

errors for the saliency detection of each super-pixel. 

( 1 ) Saliency measure based on the ULRR coefficients 

As discussed in the earlier part of Section 3.2 , the low-rank part

DZ k , decomposed by the ULRR in Eq. (6) , contains the "intrinsic"

characteristics of each super-pixel cluster C k . Each cluster may cor-

respond to a part of a salient object in the foreground or a local re-

gion in the background. Therefore, the detection of a salient object

in the foreground could be achieved by using the low-rank part (or

information) contained in each cluster. 

Consider the i -th column x k, i , which is the feature data of the

i -th super-pixel grouped in the cluster C k . Let z k, i ∈ R N and e k, i ∈
 

d denote the i -th column of the matrices Z k and E k , respectively.

hen x k, i can be represented as 

 k,i = D z k,i + e k,i = [ x s 1 , x s 2 , ..., x s N ] 

⎡ 

⎢ ⎢ ⎣ 

Z k (1 , i ) 
Z k (2 , i ) 

. . . 
Z k (N, i ) 

⎤ 

⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎣ 

E k (1 , i ) 
E k (2 , i ) 

. . . 
E k (2 , i ) 

⎤ 

⎥ ⎥ ⎦ 

= x s 1 Z k (1 , i ) + x s 2 Z k (2 , i ) + ... + x s N Z k (N, i ) + e k,i . (12)

Therefore, as discussed in Zhang et al. (2013 ), the coefficient

 k ( j, i ) ( j = 1 , 2 , ..., N) indicates the correlation (or similarity) be-

ween the data x k, i and the j -th atom x s j in the dictionary to some

xtent. Larger absolute value of Z k ( j, i ) indicates higher correlation

similarity) between the data x k, i and the atom x s j . 

Moreover, as shown in Fig. 4 , the first ρ atoms in the dictio-

ary D are from the potential foreground super-pixels, and the

ast ρ atoms are from the potential background super-pixels. As

 result, the sum of the absolute values of the first ρ coefficients
 ρ
j=1 

| Z k ( j, i ) | in the vector z k, i may reflect the similarity between

he super-pixel sp k, j and the potential foreground super-pixels. Ac-

ordingly, the sum of the absolute values of the last ρ coefficients
 N 
j= N−ρ+1 | Z k ( j, i ) | in the vector z k, i may reflect the similarity be-

ween the super-pixel sp k, j and the potential background super-

ixels. 

Let Z 

F G 
k 

be the first ρ rows of ULRR coefficients Z k , and Z 

BG 
k 

e the last ρ rows of matrix Z k . Similarly, the sum of the abso-

ute values of all the entries in the matrix Z 

F G 
k 

, denoted by ‖ Z 

F G 
k 

‖ 1 ,
mplies the similarity between the super-pixel cluster C k and the

otential foreground super-pixels. The sum of the absolute values

f all the entries in the matrix Z 

BG 
k 

, denoted by ‖ Z 

BG 
k 

‖ 1 , refers to

he similarity between the super-pixel cluster C k and the potential

ackground super-pixels. Therefore, the proposed saliency measure

 ( C k ) for each cluster C k is defined by 

 ( C k ) = 

∥∥Z 

F G 
k 

∥∥
1 

−
∥∥Z 

BG 
k 

∥∥
1 
. (13)

( 2 ) Saliency measure based on reconstruction errors 

As discussed above, the representation coefficients describe the

imilarity between each super-pixel cluster and those potential

oreground or background super-pixels. Accordingly, the saliency

or each super-pixel cluster with respect to the entire image can

e computed by using Eq. (13) , and the representation coefficient

ased saliency measure can also be seen as a global saliency mea-

ure. 

Different from the representation coefficients, each column in

he error matrix E indicates the differences between each super-

ixel and its corresponding super-pixel clusters. Those super-pixels

hat are significantly distinct from their corresponding super-pixel

luster regions actually produce higher reconstruction errors. In
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Algorithm 2. 

Salient object detection based on the LSSC and ULRR. 

Input : Image I ; parameters τ and α. 

Output : Pixel-level saliency map S ( p ). 

Begin : 

(1) Super-pixel segmentation using SLIC ( Achanta and Shaji, 2012 ); 

(2) Super-pixel clustering using LSSC ( Xie et al., 2013 ); 

(3) Super-pixel feature extraction using Eq. (2) ; 

(4) Construction of the feature matrix for each super-pixel cluster using Eq. (3) ; 

(5) Construction of the primitive saliency dictionary using Eq. (9) ; 

(6) ULRR decomposition on the super-pixel cluster features using Eq. (6) ; 

(7) Saliency measure for super-pixel cluster using Eq. (13) 

(8) Saliency measure for each super-pixel using Eq. (14) ; 

(9) Construction of pixel-level saliency map using Eqs. (17) and ( 18 ). 

(10) Smoothed pixel-level saliency map by using Eq. (19) . 

End 
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ther words, the saliency for each super-pixel with respect to its

orresponding super-pixel cluster can be measured by the error

atrix E. This is particularly true for those super-pixels corre-

ponding to small salient objects or local parts within the large

alient objects but with different features from the salient objects. 1 

n view of this fact, we also involve the sparse reconstruction error

atrix E to define a local saliency measure for each super-pixel in

his part, which is expected to be complementary with the global

epresentation coefficient based saliency measure for each super-

ixel cluster introduced above. 

Moreover, many studies have shown that incorporating some

riors, such as boundary prior ( Li and Fu, 2014 ), shape prior ( Jiang

nd Wang, 2011 ) and color prior ( Shen and Wu, 2012 ), could en-

ance the saliency detection results to some extent. Especially, the

olor prior is more frequently used in image saliency detection

 Kim et al., 2016 ). Similarly, we also integrate the color prior ( Shen

nd Wu, 2012 ) into the saliency detection of each super-pixel. And

he saliency measure S ( sp i ) for the i -th super-pixel sp i is computed

y 

 ( s p i ) = ‖ 

E ( : , i ) ‖ 2 × pr ior ( s p i ) , (14)

here E (:, i ) is the i -th column of the matrix E , and ‖ E (:, i ) ‖ 2 
enotes its l 2 -norm, i.e., ‖ E ( : ,i ) ‖ 2 = 

√ ∑ 

j ( E ( j,i ) 
2 ) . prior ( sp i ) denotes the

olor prior of super-pixel sp i and can be computed as in Shen and

u (2012 ). 

.2.4. Pixel-level saliency map 

According to the saliency measures { L ( C k ) | k = 1 , 2 , ..., K } and

 S( s p i ) | i = 1 , 2 , ..., N } , two pixel-level saliency maps Sal L ( p ) and

al S ( p ) with full resolution are obtained by Eqs. (15) and (16) , re-

pectively, where p represents a pixel in the input image. 

a l L (p) = L ( C k ) , if p ∈ C k , (15)

a l S (p) = S ( s p i ) , if p ∈ s p i . (16)

With the two pixel-level saliency maps Sal L ( p ) and Sal S ( p ), a

used saliency map S f ( p ) is obtained using a multiplicative strategy

 f (p) = ( Sa l L (p) ) 
α × ( Sa l S (p) ) 

1 −α
, (17) 

here α is a weight to be experimentally determined. 

After that, the final pixel-level saliency map S ( p ) with full res-

lution is obtained by integrating the center prior with the above

aliency map, which is computed by 

 ( p ) = G o ( p ) × S f ( p ) . (18) 

Here, the object-biased Gaussian model G o ( p ) in Lu and Li

2016 ), instead of the traditional Gaussian model, is employed as

he center prior considering that salient object does not always ap-

ear at the image center. 

Besides, similar to ( Tong and Lu, 2015 ), we apply the Max-Flow

ethod ( Borkov and Kolmogorov, 2004 ) to smooth the pixel-level

aliency map S ( p ), and the smoothed saliency map is noted as

 smooth ( p ). Thus, the final full-resolution pixel-level saliency map is

ormulated as 

 f inal (p) = 

S(p) + S smooth (p) 

2 

. (19) 

In summary, the main steps of the proposed salient object de-

ection method can be described by Algorithm 2 . And Fig. 5 illus-

rates the results from each component. 
1 In this case, these super-pixels may be mistakenly grouped into a background 

uper-pixel cluster. For example, the flower center region in Fig. 3 is mistakenly 

rouped into a background super-pixel cluster denoted by the red color. 

4

 

r  

a  
Fig. 5 illustrates the detected results obtained by different steps

n the proposed method. As can be seen in Fig. 5 (b), the majority

f the salient objects could be detected using the representation

oefficient based measure only. Meanwhile, several local regions

ithin these salient objects, shown in Fig. 5 (c), could be better de-

ected using the reconstruction error based saliency measure. Our

dea fusing the two saliency maps allows the whole objects to be

xtracted completely. After performing the center prior on these

aliency maps, the salient objects are further highlighted. In addi-

ion, the background noise is well suppressed. This can be viewed

n Fig. 5 (d) and 5 (e), respectively. 

.3. Computational complexity analysis 

Closely looking at our system reveals that the LSSC based super-

ixel clustering and the ULRR decomposition take up the most

ime. In this subsection, we theoretically investigate the compu-

ational complexity of this algorithmic part. 

For LSSC, the major computation is the l 1 minimization in

q. (A1) , whose complexity is about O (d N 

2 ) + O ( r 1 N 

2 ) . Here, N de-

otes the number of super-pixels to be clustered. d refers to the

imension of each super-pixel feature vector. r 1 is the number

f iterations in this step. Hence, the computational complexity

f the ULRR model is about O ( d 2 N ) + O ( r 2 ( d 
2 N + d 3 ) ) consider-

ng that the global dictionary D in the proposed ULRR model is

onstructed by all of the super-pixels in the test image, and d is

ssumed to be d ≤ N . Here, r 2 denotes the number of iterations

uring the ULRR decomposition. Accordingly, the computational

omplexity of the proposed method is about O ( d 2 N ) + O ( r 1 N 

2 ) +
 ( r 2 ( d 

2 N + d 3 ) ) . More specifically, the number of super-pixels N

as a greater impact on the computational complexity of the clus-

ering component and the dimension d has a greater impact on the

omputational complexity of the ULRR component. 

. Experiments and analysis 

Several sets of experiments are performed to verify the fea-

ibility of our proposed method (LSSC_ULRR, for short). First, we

iscuss the impacts of some parameters on the proposed method.

econdly, we test the proposed method on images with large-size

alient objects or cluttered backgrounds to verify the claimed con-

ribution. Thirdly, we show the superiority of the proposed method

ver some state-of-the-art methods using three public datasets. Fi-

ally, we show and analyze failure cases for the proposed method.

.1. Impacts of different parameters 

In this subsection, we investigate the effects of several key pa-

ameters used in our algorithm based on the MSRA10 0 0 ( Achanta

nd Hemami, 2009 ) dataset, including cluster numbers, number
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Fig. 5. Illustration of the results obtained by different components of our proposed method. (a) Test image. (b) Result by using the representation coefficient based saliency 

measure, i.e., Eq. (13) . (c) Result obtained by using the reconstruction error based saliency measure, i.e. Eq. (14) . (d) Result after fusing (b) and (c), i.e., Eq. (17) . (e) Result by 

performing the center prior on (d), i.e. Eq. (18) . (f). Result smooth by using the Max-Flow method. (g). Ground truth. 

Fig. 6. Illustrations of the results by using different cluster numbers. 
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of potential foreground dictionary atoms and the parameter α in

Eq. (17) . 

First, we discuss the impact of the number of super-pixel clus-

ters K on system performance. Fig. 6 illustrates different detected

results when varying the number of super-pixel clusters. For a bet-

ter comparison, we also provide the detected results using the

proposed method but without the clustering operation, i.e., di-

rectly performing the ULRR decomposition on feature matrix of the

super-pixels. It can be obviously found that the number of clusters

has a great impact on the detected results. As shown in the second

row of Fig. 6 (b), parts of the background and the salient object will

be grouped into the same cluster and thus will be mistakenly la-

beled as the salient ones when K is set to too small value (e.g.

K = 5 ). In contrast, when K is set to too large value (e.g. K = 15 ),

the object will be segmented into more regions and each region

will have different saliency values. This results in the non-uniform

detection results, as shown in the last row of Fig. 6 (d). This is par-

ticularly true when the clustering operation is not considered dur-

ing the saliency detection. In addition, some background noise will

also be introduced as shown in Fig. 6 (e). This is also consistent

with the precision versus recall (PR) curves ( Li and Hou, 2014 ), dis-

played in Fig. 7 (a). 

In addition to the number of clusters K , the impacts of the

number of potential foreground dictionary atoms ρ and the
arameter α in Eq. (17) are also discussed here. Fig. 7 (b) and (c)

rovide the PR curves on the MSRA 10 0 0 dataset obtained using

ifferent values ρ and α, respectively. Fig. 7 indicates that the per-

ormance of the proposed method achieves the best when the pa-

ameters K, ρ and α are set to 10, 20 and 0.8, respectively. There-

ore, in the following experiments, these parameters are set to 10,

0 and 0.8, respectively. 

.2. Validity of the proposed method on several types of images 

To further verify the claimed contributions, in this subsection,

e establish four sub-datasets, in which SO dataset is formed by a

et of images with small objects, LO dataset consists of a set of im-

ges with large objects, MO dataset contains a set of images with

ultiple objects and CS dataset constitutes a set of images with

omplicated structures. Based on those four sub-datasets, we com-

are our LSSC_ULRR with some traditional LRMR based and clus-

ering based methods, including SR_RPCA ( Yan and Zhu, 2010 ), LRR

 Lang and Liu, 2012 ), ULR ( Shen and Wu, 2012 ) and LSSC_BS ( Xie

t al., 2013 ). 

Figs. 8 –11 illustrate the detected results on these images un-

er different situations, respectively. All the results consistently

emonstrate that the proposed method LSSC_ULRR performs the

est among the five mentioned methods. In most of cases, it can
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Fig. 7. PR curves on MSRA10 0 0 dataset by using different parameters. (a) Number of clusters K ; (b) Number of potential foreground dictionary atoms ρ; (c) Parameter α in 

Eq. (17) . 

Fig. 8. Illustrations for images with small salient objects. (a) Original images; (b) SR_RPCA ( Yan and Zhu, 2010 ); (c) LRR ( Lang and Liu, 2012 ); (d) ULR ( Shen and Wu, 2012 ); 

(e) LSSC_BS ( Xie et al., 2013 ); (f) LSSC_ULRR; (g) Ground truth. 
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niformly detect the whole objects, and meanwhile, well sup-

ress the noise from the background. In summary, the detected

esults obtained by our proposal are the most near to the ground

ruth. 

More specifically, it can be found that all the five methods actu-

lly achieve satisfactory results for those images with small salient

bjects. Especially, ULR and the proposed LSSC_ULRR perform the

est in this case. In addition, the two methods also perform better

han the others for those images with multiple salient objects. This

ay be attributable to the usage of ULRR models in these meth-

ds. However, as shown in Fig. 9 (e) and (f), only LSSC_BS and the

roposed LSSC_ULRR perform the best for those images with large

alient objects. This may be due to the fact that the two methods

arry out the saliency detection on the super-pixel clusters rather

han only the local block patches or super-pixels. Finally, it can also

e found that the proposed LSSC_ULRR still works well for those

mages with complicated structures, as shown in Fig. 11 (f). In con-

rast, the other methods unfortunately fail in this case. 

.3. Detection results on some public datasets 

In this subsection, we will employ three public datasets, i.e.,

SRA10K ( Cheng and Mitra, 2015 ), ECSSD ( Shi et al., 2016 ) and

UT-OMRON ( Yang and Zhang, 2013 ) to thoroughly test the per-

ormance of the proposed method. The MSRA10K dataset con-

ains 10,0 0 0 images, most of which have a single object and high

ontrast between foreground objects and backgrounds. The ECSSD

ataset includes 10 0 0 images, in which images are structurally

omplex and objects cover various categories. The DUT-OMRON
ataset contains 5168 images and most of them either involve

omplex backgrounds or have high contrast with respect to the en-

ire image. Apart from ULR ( Shen and Wu, 2012 ) and LSSC_BS ( Xie

t al., 2013 ), some of up to date methods, including SR-LC ( Huo

nd Yang, 2016 ), DSR ( Lu and Li, 2016 ), RBD ( Zhu and Liang, 2014 ),

F ( Perazzi and Krahenbull, 2012 ), PCA ( Margolin et al., 2013 ), CA

 Goferman et al., 2012 ), SS ( Hou et al., 2012 ), RC ( Cheng and Mi-

ra, 2015 ), DCLC ( Zhou and Yang, 2015 ), and RW_MR ( Liu and Cai,

015 ), will be compared with our proposed method. 

Fig. 12 illustrates the detected results obtained by different

ethods on the three public datasets. These results demonstrate

ost methods mentioned here can well detect the salient objects

ontained in the test images. Especially, DSR, RBD and the pro-

osed LSSC_ULRR perform better than the other methods in most

ases. The salient objects are more uniformly highlighted by the

hree methods. At the same time, the background noise is better

uppressed by the three methods. In general, the detected results

re closer to the ground truth. 

According to the comparison, the proposed LSSC_ULRR obtains

etter visual detected results than RBD and DSR in some cases. For

xample, in the second row for MSRA10K, LSSC_ULRR succeeds in

eparating the salient objects from background, while RBD and DSR

ail. In the third row for ECSSD, RBD and DSR only detect some

arts of the salient object, while LSSC_ULRR can detect the whole

alient object. In the last row for DUT-OMRON, LSSC_ULRR obtains

etter suppression of the background noise than RBD and DSR do.

pecifically, in the second rows for ECSSD and DUT-OMRON, some

ackground regions are mistakenly labeled as salient regions by

SR, but these regions can be well detected by LSSC_ULRR. 
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Fig. 9. Illustrations for images with large salient objects. (a) Original images; (b) SR_RPCA ( Yan and Zhu, 2010 ); (c) LRR ( Lang and Liu, 2012 ); (d) ULR ( Shen and Wu, 2012 ); 

(e) LSSC_BS ( Xie et al., 2013 ); (f) LSSC_ULRR; (g) Ground truth. 

Fig. 10. Illustrations for images with multiple salient objects. (a) Original images; (b) SR_RPCA ( Yan and Zhu, 2010 ); (c) LRR ( Lang and Liu, 2012 ); (d) ULR ( Shen and Wu, 

2012 ); (e) LSSC_BS ( Xie et al., 2013 ); (f) LSSC_ULRR; (g) Ground truth. 

Fig. 11. Illustrations for images with complicated structures. (a) Original images; (b) SR_RPCA ( Yan and Zhu, 2010 ); (c) LRR ( Lang and Liu, 2012 ); (d) ULR ( Shen and Wu, 

2012 ); (e) LSSC_BS ( Xie et al., 2013 ); (f) LSSC_ULRR; (g) Ground truth. 
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Fig. 12. Illustrations of the results generated by different methods on the three public datasets, i.e., MSRA10K, ECSSD, and DUT-OMRON. (a) Original images; (b) LRR ( Lang 

and Liu, 2012 ); (c) ULR ( Shen and Wu, 2012 ); (d) LSSC_BS ( Xie et al., 2013 ); (e) SS ( Hou et al., 2012 ); (f) CA ( Goferman et al., 2012 ); (g) RC ( Cheng and Mitra, 2015 ); (h) SF 

( Perazzi and Krahenbull, 2012 ); (i) PCA ( Margolin et al., 2013 ); (j) SR-LC ( Huo and Yang, 2016 ); (k) RW_MR ( Liu and Cai, 2015 ); (l) DCLC ( Zhou and Yang, 2015 ); (m) RBD 

( Zhu and Liang, 2014 ); (n) DSR ( Lu and Li, 2016 ); (o) LSSC_ULRR; (p) Ground truth. 
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In addition to visual comparison, the quantitative comparisons

mong different methods on the three datasets are also provided

n Fig. 12 , including the PR curves ( Li and Hou, 2014 ), the F-

easure curves ( Li and Hou, 2014 ), average precision, recall, and F-

easure bars ( Li and Hou, 2014 ), and MAE bars ( Li and Hou, 2014 ).

imilar conclusions can be drawn according to these quantitative

esults. In most cases, RBD, DSR and the proposed LSSC_ULRR

ank in the top three on the three datasets through comprehen-

ive consideration of the four evaluation metrics. We also find that

SSC_ULRR performs better than RBD on MSRA10K. Especially, the

roposed LSSC_ULRR gets the F-measure curve over a wide range

or all the three public datasets, meaning that it gets good separa-

ion of background and foreground under all thresholds. In other

ords, the proposed LSSC_ULRR gets background suppressed and

eanwhile makes foreground prominent. 

As shown in the above quantitative results, DSR generally per-

orms better than the proposed LSSC_ULRR method. However, for

ome cases, e.g., images with salient objects of greatly large sizes

r images in which the salient objects touch the image boundaries,

he proposed LSSC_ULRR method performs better than DSR. For ex-

mple, as shown in the first two columns of Fig. 14 , LSSC_ULRR

ould obtain more uniform saliency maps for salient objects of

reatly large sizes. This may be owing to the proposed cluster-

ased saliency measure. As shown in the last four columns of

ig. 14 , the proposed LSSC_ULRR method could still detect the

p  
ntire salient objects even if they touch the image boundaries.

owever, in this case, DSR just detected parts of the salient ob-

ects. This may be owing to the different dictionaries employed in

he two methods. 

However, we also found that the proposed method just

chieved moderate performance among these mentioned methods

n terms of the PR metric. As discussed above, some images in the

UT-OMRON dataset are too complex to be well clustered. The in-

ccurate clustering results thus degrade the final performance of

he proposed method. Fig. 15 illustrates some failure cases of our

roposed method. As shown in Fig. 15 , the test images are ex-

remely complicated and the clustering results for these images

re very inaccurate. Subsequently, the salient objects are not well

etected for these images. Exploiting a more effective clustering

ethod may be desirable in this case. This is still a challenging

roblem, especially for those images with complex structures. We

eave this for our future work. 

. Conclusion 

In this paper, we propose a simple but effective salient ob-

ect detection method based on LSSC and ULRR, in which the

alient object detection is achieved via the saliency detection of

uper-pixel clusters. We first segment the input image into super-

ixels and group them with LSSC. Then we formulate the saliency
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Fig. 13. Quantitative comparisons of different methods on the three public datasets. 

Fig. 14. Visual comparison. (a) Original images; (b) DSR ( Lu and Li, 2016 ); (c) 

LSSC_ULRR; (d) Ground truth. 
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detection of the super-pixels as a unified low-rankness and spar-

sity pursuit problem by using ULRR. As well, the ULRR coeffi-

cients are employed to compute a global saliency measure for each

super-pixel cluster with respect to the entire image, and the sparse
econstruction errors are used to construct a local saliency mea-

ure for each super-pixel with respect to each super-pixel cluster.

xperimental results demonstrate the proposed method performs

etter than the traditional LRMR based and clustering based meth-

ds and is comparable to some current state-of-the-art methods.

specially, it can completely detect the whole salient object with

arge size in an image in most cases. And the detection results

re very close to the ground-truth images. In addition, it can ef-

ectively suppress the noise from the backgrounds when the back-

rounds of the input images contain multiple different textures. 
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Fig. 15. Failure cases. (a) Original images; (b) Cluster results; (c) Saliency maps; (d) 

Ground truth. 
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ppendix A 

In this appendix, we will briefly introduce a spectral clustering

lgorithm, i.e., Laplacian sparse subspace clustering method (LSSC),

resented in Xie et al. (2013 ), which is used to group super-pixels

n our proposed method. 

For spectral clustering, one of the main issues is to construct

n effective adjacency matrix that describes the similarity between

ach pairs of super-pixels accurately. In LSSC, a sparse similarity

atrix is exploited for spectral clustering, which is motivated by

he following two observations ( Cai et al., 2010 ). One observation

s that each data point in a union of subspaces is assumed to be-

ong to a unique subspace and can be represented as a linear or

ffine combination of other points in the same subspace. Conse-

uently, each point has a sparse representation when entire set of

ata points is considered. The second observation is that similar

uper-pixels should have similar sparse coefficients. 

Given N points 2 { u i ∈ R d | i = 1 , 2 , ..., N } and the constraint (affin-

ty) matrix S ∈ R N × N , the sparse representation vector c i ∈ R N−1 

or the point u i is obtained by solving the following optimization

roblem 

in 

∥∥U ˆ i 
c i − ū i 

∥∥
2 

+ λ1 ‖ 

c i ‖ 1 + λ2 / 2 

∑ 

i j 

∥∥c i − c j 
∥∥2 

S i j s.t.c T i 1 = 1 , 

(A1) 

here the basis matrix U ˆ i 
∈ R d×(N−1) is obtained from the matrix

 = [ u 1 , u 2 , ..., u N ] ∈ R d×N by removing the i -th column u i . λ1 and

2 are two positive trade-off parameters, and are experimentally

et to 0.01 and 0.2, respectively. The ( i, j )-th element S i, j in the

onstraint matrix S measures the similarity of the two super-pixels

p i and sp j . More details about the computation of the matrix S

re seen in Xie et al. (2013 ). An N -dimensional vector ˆ c i ∈ R N is

btained by inserting a zero at the i -th row of c i . 

After obtaining the sparse representation vector for each point,

 matrix C = [ ̂ c 1 , ̂  c 2 , ..., ̂  c N ] ∈ R N×N and a corresponding symmetric

imilarity matrix ˜ C = ( C + C 

T ) ∈ R N×N are thus constructed. With

he matrix ˜ C as the adjacency matrix, a graph ϒ = ( V, E ) is de-

ned, where V are the N points, and ( v i , v j ) ∈ E if ˜ C i, j is non-zero.

he Laplacian matrix A of the graph ϒ is thus formed as A = B − ˜ C ,

here B is a diagonal matrix with B ii = 

∑ 

j ̃
 C i j . The clustering re-

ult is finally obtained by applying the K -means algorithm to the

igenvector of the Laplacian matrix A . 
2 Each point u i may correspond to the feature vector of the i -th super-pixel sp i in 

ur proposed method. 

d

∇  
ppendix B 

In this appendix, the update scheme required for solving

q. (11) in the text is described in detail. 

(1) Update J k (k = 1 , 2 , ..., K) 

 

j+1 

k 
= arg min 

J k 

‖ 

J k ‖ ∗ + 

〈
W 

j 

k 
, Z 

j 

k 
− J k 

〉
+ 

μ j 

2 

∥∥Z 

j 

k 
− J k 

∥∥2 

F 

= arg min 

J k 

1 

μ j 
‖ 

J k ‖ ∗ + 

1 

2 

∥∥∥∥J k −
(

Z 

j 

k 
+ 

1 

μ j 
W 

j 

k 

)∥∥∥∥
2 

F 

. (B1) 

This sub-optimization problem has the following closed-form

olution ( Wright et al., 2009 ): 

 

j+1 

k 
= SV T 1 

μ j 

(
Z 

j 

k 
+ 

1 

μ j 
W 

j 

k 

)
, (B2) 

here SVT δ( �) denotes the Singular Value Thresholding (SVT) op-

ration ( Wright et al., 2009 ) on the matrix � with the threshold

. 

(2) Update Z k (k = 1 , 2 , ..., K) 

 

j+1 

k 
= arg min 

Z k 

〈
Y 

j 

k 
, X k − D Z k − E 

j 

k 

〉
+ 

〈
W 

j 

k 
, Z k − J j+1 

k 

〉
+ 

μ j 

2 

(∥∥X k − D Z k − E 

j 

k 

∥∥2 

F 
+ 

∥∥Z k − J j+1 

k 

∥∥2 

F 

)

= arg min 

Z k 

∥∥∥∥X k −D Z k −E 

j 

k 
+ 

Y 

j 

k 

μ j 

∥∥∥∥
2 

F 

+ 

∥∥∥∥Z k −J j+1 

k 
+ 

W 

j 

k 

μ j 

∥∥∥∥
2 

F 

. (B3) 

This sub-optimization problem has the following closed-form

olution: 

 

j+1 

k 
= 

(
D 

T D + I 
)−1 

(
D 

T 
(
X k − E 

j 

k 

)
+ J j+1 

k 
+ 

D 

T Y 

j 

k 
− W 

j 

k 

μ j 

)
, (B4) 

here I denotes an identity matrix. 

(3) Update E 

 

j+1 = arg min 

E 

λ1 ‖ 

E ‖ 2 , 1 + λ2 tr( EL E 

T ) 

+ 

K ∑ 

k =1 

(〈
Y 

j 

k 
, X k − DZ 

j+1 

k 
− E k 

〉
+ 

μ j 

2 

∥∥X k − DZ 

j+1 

k 
− E k 

∥∥2 

F 

)

= arg min 

E 

λ1 ‖ 

E ‖ 2 , 1 + λ2 tr( EL E 

T ) + 

μ j 

2 

|| E − G || 2 F 

= arg min 

E 

λ1 ‖ 

E ‖ 2 , 1 + f (E ) (B5) 

here f (E ) = λ2 tr( EL E 

T ) + 

μ j 

2 || E − G || 2 
F 

. G is formed by horizon-

ally concatenating G 1 , G 2 , ..., G K together along the row, i.e.,

 = [ G 1 , G 2 , ..., G K ] . And G k ( k = 1 , 2 , ..., K) is defined by G k = X k −
Z 

j+1 

k 
+ 

Y 
j 
k 

μ j . To solve Eq. (B5) , the quadratic term f ( E ) is replaced

y its first order approximation at the previous iteration by adding

 proximal term ( Wright et al., 2009 ), i.e., 

 

j+1 = arg min 

E 
λ1 ‖ 

E ‖ 2 , 1 + 

η j 

2 

∥∥E − E 

j 
∥∥2 

F 
+ 

〈∇ E f 
(
E 

j 
)
, E − E 

j 
〉

= arg min 

E 

λ1 

η j 
‖ 

E ‖ 2 , 1 + 

1 

2 

∥∥∥∥E − E 

j + 

1 

η j 
∇ E f 

(
E 

j 
)∥∥∥∥

2 

F 

, (B6) 

here ηj is set to η j = 1 . 02( 2 λ2 ‖ L ‖ 2 F 
+ μ j ) . ∇ E f ( E 

j ) is the partial

ifferential of f ( E ) with respect to E , and is computed by 

 E f ( E 

j ) = 2 λ2 E 

j L + μ j ( E 

j − G ) . (B7)
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Thus, the sub-optimization problem has the following closed-

form solution ( Liu and Lin, 2013 ): 

E 

j+1 (: , i ) = 

⎧ ⎨ 

⎩ 

( ‖ 

Q (: , i ) ‖ 2 − λ1 

η j ) 

‖ 

Q (: , i ) ‖ 2 

Q (: , i ) , if ‖ 

Q (: , i ) ‖ 2 ≥ λ1 

η j 

0 , otherwise 

, (B8)

where Q = E 

j − 1 
η j ∇ E f ( E 

j ) . E (:, i ) and Q (:, i ) denote the i -th col-

umn of the matrix E and Q , respectively 
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