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Joint Cross-Modal and Unimodal Features for
RGB-D Salient Object Detection

Nianchang Huang , Yi Liu , Qiang Zhang , and Jungong Han

Abstract—RGB-D salient object detection is one of the basic tasks
in computer vision. Most existing models focus on investigating
efficient ways of fusing the complementary information from RGB
and depth images for better saliency detection. However, for many
real-life cases, where one of the input images has poor visual quality
or contains affluent saliency cues, fusing cross-modal features does
not help to improve the detection accuracy, when compared to using
unimodal features only. In view of this, a novel RGB-D salient object
detection model is proposed by simultaneously exploiting the cross-
modal features from the RGB-D images and the unimodal features
from the input RGB and depth images for saliency detection. To
this end, a Multi-branch Feature Fusion Module is presented to
effectively capture the cross-level and cross-modal complementary
information between RGB-D images, as well as the cross-level
unimodal features from the RGB images and the depth images
separately. On top of that, a Feature Selection Module is designed
to adaptively select those highly discriminative features for the
final saliency prediction from the fused cross-modal features and
the unimodal features. Extensive evaluations on four benchmark
datasets demonstrate that the proposed model outperforms the
state-of-the-art approaches by a large margin.

Index Terms—RGB-D, saliency detection, multi-branch feature
fusion and feature selection.

I. INTRODUCTION

SALIENT Object Detection (SOD) is to detect the most at-
tractive region in the scene by imitating human visual mech-

anism [1]. It has been applied to a variety of computer vision
tasks, including object recognition [2], tracking [3] and segmen-
tation [4], [5], etc. Until now, tremendous efforts have been made
to detect the salient object in a given image [1], [6]–[12]. The ear-
lier methods [1], [11], [12] mainly rely on various types of hand-
crafted features (e.g., color, intensity and texture) for saliency
detection. Recently, with the rapid development of Convolu-
tional Neural Networks (CNNs) [13]–[17], CNNs based SOD
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Fig. 1. Illustration of the validity for salient object detection by using RGB-D
images. (a) RGB images; (b) Depth images; (c) Saliency maps deduced from
RGB images; (d) Saliency maps deduced from RGB-D images; and (e) Ground
truth. By comparing (c) and (d), it can be easily found that the complementary
information between RGB and depth images can boost the saliency detection
performance of the traditional RGB-deduced models.

models [6]–[10], [18]–[20] have attracted more attention and
has achieved significant improvements than conventional mod-
els [1], [12].

However, most of these SOD models are designed for visible
light images of Red, Green and Blue channels (i.e., RGB im-
ages). For some challenging scenarios, for example, as shown
in the first row of Fig. 1(a) where the salient object and the
background share similar appearance, or as shown in the sec-
ond row of Fig. 1(b) where the background is complex, these
RGB-induced models may be powerless. In order to address such
issues, researchers started to look into the possibility of using
complementary information acquired by two different cameras
to enhance image saliency detection. Fusing RGB and depth
(RGB-D) images turns out to be one of the most feasible solu-
tions due to the rapid development of depth sensory technolo-
gies, such as Microsoft Kinect [21] and Intel Realsense [22]. Dif-
ferent from RGB images that mainly provide spatial appearances
of the scene, depth images provide affluent spatial structures and
3D layout information about the scene, which are robust to light
and color changing. Benefiting from the complementary infor-
mation between RGB-D images, more desirable salient object
detection results may be obtained. For example, as shown in the
first row of Fig. 1(d), by using the depth information, the salient
object in the foreground may be easily distinguished from the
background although they have similar spatial appearances. As
shown in the second row of Fig. 1(d), multiple objects with sim-
ilar spatial appearances may also be easily distinguished from
each other by using the depth information because they have
different distances to the imaging sensor.

To exploit these complementary information, some CNNs
based RGB-D salient object detection models have also been
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Fig. 2. Illustrations of the discriminative ability of cross-modal features and unimodal features under different cases. (a) RGB images; (b) Depth images; (c) RGB
features; (d) Depth features; (e) Cross-modal features; (f) Saliency maps deduced by RGB features; (g) Saliency maps deduced by depth features; (h) Saliency
maps deduced by cross-modal features; (i) Saliency maps obtained by our model that uses cross-modal features as well as unimodal features; and (j) Ground truth.
Both the RGB and depth images in the first and second rows contain many discriminative saliency cues, which may be complementary to each other. Thereby, the
corresponding cross-modal features contain the fine details of unimodal RGB features and the depth information of unimodal depth features. However, the depth
images in the third and fourth rows are low-quality and the RGB images in the fifth and sixth rows contain multiple objects (e.g., persons) with similar spatial
appearances, which introduce some disturbing information to the fused cross-modal features (e.g., the red boxes in (c)-(e)). As a result, some of these objects are
mistakenly detected as salient ones by just using the fused cross-modal features (e.g., the blue boxes in (h)).

presented in recent years, which can be divided into three cate-
gories: pixel-level fusion [23], feature-level fusion [24]–[29] and
decision-level fusion [30], [31]. In pixel-level fusion, the source
RGB-D images are simply considered as four-channel inputs
and fed into the networks. In decision-level fusion, two saliency
maps are first induced from the input RGB and depth images, re-
spectively and then fused to obtain the final saliency map. While,
in feature-level fusion, a two-stream network is first employed
to extract the features from the source RGB and depth images,
respectively. Then the extracted features from each unimodal
image are fed into a fusion network. The saliency map is finally
deduced from these fused features. In general, feature-level fu-
sion can obtain better saliency results than pixel-level fusion and
decision-level fusion [25] and thus has attracted more attention
in recent years.

Moreover, most RGB-D salient object detection methods
based on feature-level fusion usually make use of the comple-
mentary cross-modal features from RGB-D images to predict
the final saliency maps. As illustrated in the first two rows of
Fig. 2, better predictions are generally deduced from the fused
cross-modal features than those from unimodal features (e.g.,
RGB features or depth features). However, it is doubtable that
the fused cross-modal features always perform better than those
unimodal features, especially when one of the input images has
poor visual quality or contains affluent saliency cues. For exam-
ple, as shown in the red-rectangle regions in the last four rows
of Fig. 2, some disturbing features from one of the input images
(depth images in the 3rd and 4th rows of Fig. 2, or RGB images
in the 5th and 6th rows of Fig. 2) are introduced into the fused

features and thus weaken the discriminative ability of the fused
features for saliency detection. Accordingly, some background
regions are mistakenly determined to be salient ones in the final
prediction if using the fused cross-modal features.

Alternatively, better saliency detection results may be ob-
tained if the unimodal (RGB or depth) features and the fused
cross-modal features can be simultaneously used during the fi-
nal saliency prediction. Based on this intuition, we present a
novel end-to-end CNN architecture for RGB-D salient object
detection in this paper. In the proposed network, a Multi-branch
Feature Fusion Module (MFFM) is designed, in which the
fused cross-modal features between RGB-D images and the uni-
modal features from RGB and depth images are simultaneously
captured and preserved prior to being fed into the prediction
sub-network. On top of that, a Feature Selection Module (FSM)
based on the channel-wise attention mechanism is designed to
adaptively select those features for the final saliency prediction.
As shown in Fig. 2, better saliency detection results can be ob-
tained by jointly using the fused cross-modal RGB-D features as
well as the unimodal RGB and depth features, rather than using
the fused cross-modal RGB-D features only.

In summary, the main contributions of this work are as
follows:

1) An end-to-end CNNs based RGB-D salient object detection
network is proposed. As the departure from existing models that
only consider the fused cross-modal RGB-D features, our model
enables to simultaneously use the fused cross-modal RGB-D
features and the unimodal (RGB and depth) features for saliency
detection.
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2) An MFFM is presented to effectively capture the cross-
modal complementary information between RGB-D images, as
well as the unimodal features from the RGB images and the
depth images. By cascading several MFFMs, the extracted cross-
modal and unimodal features are organized in a coarse-to-fine
way and contribute interactively to saliency prediction.

3) Based on the channel-wise attention mechanism, an FSM
is designed, where the global and local information are simul-
taneously employed to adaptively select highly discriminative
cross-modal and unimodal features for more accurate salient
object detection.

The rest of this paper is organized as follows. In Section II,
we briefly introduce previous works related to RGB and RGB-D
salient object detection. In Section III, the details of the pro-
posed method are presented. Several experiments are conducted
to evaluate the proposed model in Section IV. Finally, Section V
concludes this paper.

II. RELATED WORK

A. RGB Salient Object Detection

So far, a number of models have been presented for RGB
based salient object detection. Conventional models [1], [11],
[12] mainly rely on various types of handcrafted features, such
as color, intensity and texture, for saliency detection. Recently,
CNNs have been widely used in many computer vision tasks,
such as classification [13], [14], [16] and segmentation [32],
[33], because of its strong feature learning ability. A lot of CNNs
based saliency detection models have also been available [7], [8],
[34]–[37].

Early CNNs based saliency detection models first employ
convolutional layers for feature extraction and then utilize fully
connected layers for saliency prediction. For instance, Wang
et al. [36] first utilized two sub-networks to automatically learn
local and global features, given the input images. Then the
learned features were fed into multiple fully connected layers for
saliency prediction. However, the employed fully connected lay-
ers decrease the computational efficiency via dropping the spa-
tial information. Later works address this issue with Fully Con-
volutional Network (FCN) based saliency detection networks
[7], [8], [34], [35], due to the fact that FCN can make dense
predictions for pixel-level tasks. Most FCN based salient object
detection models exploit multi-level contexts for saliency detec-
tion. For example, five levels of features from the VGG-16 net-
work [13] were jointly employed for saliency detection in [35].
In [34], a generic framework aggregating multi-level convolu-
tional features was presented for salient object detection, which
simultaneously incorporated coarse semantics and fine details.
Furthermore, some works employ multi-scale contextual infor-
mation to obtain more robust results for the salient objects with
different sizes. For example, a multi-scale context-aware feature
extraction module was designed in [38], where multiple dilated
convolutions were employed to capture multi-scale contextual
information for saliency detection.

However, these saliency detection models are merely de-
signed for RGB images. In most cases, these RGB-induced

saliency detection models may work well, but they may be pow-
erless for some real-life scenarios, where it is very often that
salient objects and backgrounds are similar in appearance or the
backgrounds are complex.

B. RGB-D Salient Object Detection

In order to address the above mentioned problems, some
works have introduced RGB-D images for saliency detection
considering the complementary information within the RGB
and depth images. Similar to those RGB-induced salient ob-
ject detection methods, conventional saliency detection meth-
ods for RGB-D images also relied on various types of hand-
crafted features [39], [40]. For example, a RGB-D based saliency
method was presented based on anisotropic center-surround dif-
ference in [39]. In [40], based on multi-layer cellular automata,
a multi-stage salient object detection framework via minimum
barrier distance transform and saliency fusion was proposed for
RGB-D images.

In recent years, CNN based RGB-D saliency detection mod-
els have become the mainstream [23], [25], [28], [30], [41],
[42]. In early CNN based works, the source RGB-D images
may be directly considered as the four-channel inputs and fed
into a CNN architecture for saliency detection, as in [23], [41].
Lately, various more flexible and complex CNN based RGB-D
saliency detection models have been presented to better ex-
ploit the cross-modal complementary information. Most of those
models employ the fused cross-modal features for saliency de-
tection through involving different multi-modal feature fusion
modules [20], [25], [28]. For example, a complementarity-aware
fusion module was presented in [25] to effectively exploit the
cross-modal complementation as well as the cross-level comple-
mentation in the source RGB-D images. In order to better exploit
the multi-scale cross-modal features between the source RGB-D
images, the depth information was first enhanced by using some
contrast priors that had been widely used in the non-deep learn-
ing based methods and then was used as an attention map to
work with the RGB features for saliency detection via a fluid
pyramid integration mechanism in [28].

Meanwhile, other works try to better combine the saliency
maps derived from RGB and depth images by generating suit-
able fusion weights. For instances, in [30], two saliency maps
were first generated from the RGB image and the depth image,
respectively, by using two independent sub-networks. Then a
quality-aware deep neural network was proposed via deep rein-
forcement learning to model the weights for each source image,
by which the two pre-predicted saliency maps were combined to
obtain the final saliency map. Similarly, a saliency fusion mod-
ule was presented to learn a switch map to adaptively fuse the
two saliency maps that were pre-deduced from the source RGB
and depth images, respectively, via a two-stream CNN in [31].

Recently, in [20], a novel RGB-D Salient Person (SIP) dataset
was constructed. Given the SIP dataset and existing six RGB-D
datasets, an all-around RGB-D benchmark was presented, in
which 31 classical RGB-D salient object detection models were
summarized and 17 of them were evaluated. Based on that, a
state-of-the-art baseline model, called Deep Depth-Depurator

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 14,2021 at 13:38:10 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: JOINT CROSS-MODAL AND UNIMODAL FEATURES FOR RGB-D SALIENT OBJECT DETECTION 2431

Fig. 3. Diagram of the proposed RGB-D salient object detection network. First, the unimodal RGB and depth features are extracted from the two-stream
backbone network. Then, these unimodal features are fed into the Res_ASPP modules to generate more multi-scale unimodal features. Next, these multi-scale
unimodal features are fused via the proposed MFFMs to capture cross-modal complementary information between the input RGB-D images. In addition to the
fused cross-modal features, the unimodal features from the input RGB and depth images will be also preserved for the saliency prediction via the proposed MFFMs.
Finally, those cross-modal features and unimodal features with high discriminability are adaptively selected from the last MFFM for the final saliency prediction
by using the proposed FSMs.

Network (D3Net), was also proposed, which consisted of a depth
depurator unit and a feature learning module, performing initial
low-quality depth map filtering and cross-modal feature learn-
ing, respectively.

In summary, most of these RGB-D saliency detection models
mainly focus on how to effectively capture the complementary
information within the RGB-D images for saliency prediction.
Differently, in this paper, fused cross-modal features and the
unimodal features are simultaneously employed for the purpose
of performance improvement.

III. PROPOSED MODEL

As shown in Fig. 3, the proposed RGB-D salient detection net-
work contains three components: (1) A two-stream sub-network
for unimodal image feature extraction, including one stream
for RGB image and the other for depth image; (2) An MFFM
for the fusion of cross-modal and cross-level features from the
multi-modal RGB-D images as well as the cross-level features
from the unimodal RGB and depth images; (3) An FSM based on
the attention mechanism to select discriminative features for the
saliency prediction. In the following contents, we will discuss
these three components in detail, respectively.

A. Two-stream Network for Unimodal RGB and Depth Image
Feature Extraction

The two-stream unimodal feature extraction network contains
two sub-networks with the same structure, which are used to ex-
tract the unimodal features from the RGB image and the depth
image, respectively. In both sub-networks, the VGG-16 net [13]

pre-trained on ImageNet [43] is adopted as the backbone net-
work for fair comparisons with previous works. Other networks,
such as Res-Net [16], may also be used. As well, for saliency
detection, the last pooling layer and all the full-connected lay-
ers are removed from the original VGG-16 for keeping spatial
information of input images. For each unimodal RGB or depth
image, the modified VGG-16 net provides five levels of features,
i.e., Conv 1-2 (containing 64 feature maps of size 224× 224,
denoted by F1

i ), Conv 2-2 (containing 128 feature maps of size
112× 112, denoted by F2

i ), Conv 3-3 (containing 256 feature
maps of size 56× 56 , denoted by F3

i ), Conv 4-3 (containing
512 feature maps of size 28× 28, denoted by F4

i ) and Conv 5-3
(containing 512 feature maps of size 14× 14, denoted by F5

i ).
Here i ∈ {RGB, depth} denotes the RGB or depth image.

It has been widely proven that multi-scale contextual informa-
tion is very helpful to salient object detection, since the global
context can locate the objects, while the local context can distin-
guish salient ones from the background [9], [44], [45]. Consider-
ing that, an Atrous Spatial Pyramid module with a Residual con-
nection (called as Res_ASPP) is connected to each side-output
of the VGG-16 net to capture the multi-scale contextual infor-
mation of different levels in this paper.

Atrous Spatial Pyramid Pooling (ASPP) was first presented
in [46] for semantic segmentation tasks, where four parallel
atrous convolutional paths with the same structure but different
dilation rates are employed to extract multi-scale contextual
information. Recently, it has also been used in some other
computer vision tasks, including depth estimation [47] and
salient object detection [48]. However, directly adopting ASPP
module in our proposed salient object detection model may not
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TABLE I
DETAILS OF RES_ASPPS FOR DIFFERENT LEVELS OF FEATURES

Fig. 4. Architecture of Res_ASPP. In Res_ASPP, four parallel atrous convolu-
tional layers with different dilation rates are first employed to extract multi-scale
features. Then, a short connection path is employed as a residual mapping. Fi-
nally, the outputs of Res_ASPP are obtained by adding the extracted multi-scale
features and the features from the short connection path.

work well because of the large dilation rates (e.g., 6/12/18/24) in
the original ASPP module [46]. Large dilation rates usually lead
to small weights of filters [32]. As the result of that, a reliable
contextual relationships among the spatial positions may not be
established.

Therefore, smaller dilation rates are employed in Res_ASPP.
Moreover, as shown in Table I, much smaller dilation rates (e.g.,
1/2/3/4) are utilized for the shallower levels to capture the lo-
cal contextual information, while relatively larger dilation rates
(e.g., 1/3/5/7) are employed in the Res_ASPPs for the deeper lev-
els to capture the global contextual information. This is mainly
due to the fact that shallower levels of features generally contain
more spatial details, while deeper levels of features contain more
semantics information. Finally, in addition to the four atours con-
volutional paths, a short connection path with a single regular
convolutional layer is added in Res_ASPP as a residual mapping
to accelerate the training process [16].

Fig. 4 illustrates the architecture of Res_ASPP. Mathemat-
ically, given the m-th level of extracted features Fm

i from
VGG-16 net, the outputs F̃m

i from the Res_ASPP module are
computed by

F̃m
i = δ(Cat(AConv(Fm

i , θmi,1),AConv(F
m
i , θmi,2),AConv

(Fm
i , θmi,3),AConv(F

m
i , θmi,4)) + Conv(Fm

i , ϑm
i )),

(1)

Fig. 5. Diagram of the proposed MFFM. The proposed MFFM contains three
branches, one branch for capturing cross-modal complementary information
while the other two branches for preserving unimodal (RGB and depth) features
to the next stage.

where δ(∗) and Cat(∗) denote the ReLU activation func-
tion [49] and the concatenation operation, respectively.
AConv(∗, θmi,l)(l = 1, 2, 3, 4) refers to the four atrous convo-
lutional layers with the same kernel size of 3× 3 but different
dilation rates and their corresponding network parameters θmi,l.
Conv(∗, ϑm

i ) denotes a regular convolutional layer with ker-
nel size of 1× 1 and its network parameters ϑm

i . As discussed
above, in addition to the original features Fm

i from each level
of the VGG-16 net, their multi-scale contextual information can
also be captured by Res_ASPP. This will greatly benefit the final
saliency inference and will be verified in the experimental part.

B. Multi-Branch Feature Fusion Module

Given the unimodal features extracted from RGB and depth
images, most existing RGB-D saliency detection methods pay
more attention to how to fuse these unimodal features [20],
[25], [28]. In the subsequent saliency prediction, only the fused
cross-modal features are employed and the unimodal features
are discarded. This may work well for most cases. However,
as discussed in the earlier Section I, in some special cases, the
fused cross-modal features may not always perform better than
those unimodal (RGB or depth) features, especially when one
of the input images has poor visual quality or contains affluent
saliency cues. Only using the fused cross-modal features may
not achieve desirable results for these special cases. Alterna-
tively, better saliency detection results may be obtained if the
unimodal (RGB and depth) features and the fused cross-modal
features are simultaneously used for the final saliency predic-
tion. Considering that, an MFFM is presented to simultane-
ously preserve the unimodal (RGB and depth) features as well
as the fused cross-modal features for the subsequent saliency
prediction.
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As shown in Fig. 5, the proposed MFFM contains three
branches, including one multi-modal branch and two unimodal
branches. The multi-modal branch is designed to capture the
cross-modal and cross-level complementary features from the
multi-modal RGB-D images. The other two unimodal branches
are intended to capture the cross-level complementary features
from the unimodal RGB or depth image, respectively.

The two unimodal branches (i.e., the RGB branch and
the depth branch) in the MFFM share the same structure.
Specifically, given the features F̃m

i (i ∈ {RGB, depth}) from
Res_ASPP in the m-th level, the outputs Hm

i from the unimodal
RGB or depth branch in MFFM are obtained as follows. The
outputs Hm+1

i from the corresponding branch of MFFM in the
(m+1)-th level (if exists) are first upsampled by using the bi-
linear interpolation and then concatenated with the features F̃m

i

from the Res_ASSP module for the current m-th level. After
that, the outputs Hm

i from the corresponding unimodal branch
of MFFM in the current m-th level are obtained by perform-
ing some convolution and ReLU activation operations on the
concatenated features, i.e.,

Hm
i =

⎧⎨
⎩
RB(Cat(F̃m

i ,UP(Hm+1
i ));ωm

i ),m = 1, 2, 3, 4,

RB(F̃m
i ;ωm

i ),m = 5,
(2)

where RB(∗;ωm
i ) denotes a residual block shown in the right

part of Fig. 5, containing two stacked convolutions with a ReLU
activation function and a shortcut connection. ωm

i represents the
network parameters for the block RB(∗;ωm

i ). UP(∗) denotes
the upsampling operation with a bilinear interpolation. By doing
so, the cross-level complementary information among different
levels of features from each unimodal RGB or depth image will
be well captured and preserved for the final saliency inference
in a coarse-to-fine way.

Different from the unimodal branches that just capture the
cross-level complementary features from each unimodal image,
the multi-modal branch in MFFM is designed to capture the
cross-modal as well as the cross-level complementary features
within the multi-modal RGB-D images. For that, as shown in
Fig. 5, the unimodal features F̃m

i from the Res_ASPP module
and Hm+1

i from the unimodal branch of MFFM in the coarser
level are first concatenated. Then the concatenated features from
the RGB branch and the concatenated features from the depth
branch are temporally fused via a pixel-wise summation opera-
tion. After that, the temporally fused features in the current level
and those fused featuresHm+1

RGB−D from the multi-modal branch
of MFFM in the coarser level are further concatenated and fed
into a residual block to obtain the final fused features Hm

RGB−D.
Mathematically, the multi-modal branch can be expressed by

Hm
RGB−D =⎧⎪⎨

⎪⎩
RB(Cat(Cat(F̃m

RGB,UP(Hm+1
RGB)) + Cat(F̃m

Depth,UP(

Hm+1
Depth)),UP(Hm+1

RGB−D));ωm
RGB−D),m = 1, 2, 3, 4,

RB(F̃m
RGB + F̃m

Depth;ω
m
RGB−D),m = 5.

(3)

Fig. 6. Difference between the existing FFM and our proposed MFFM.
(a) Simplified architecture of some existing RGB-D salient object detection
models based on FFM; (b) Simplified architecture of our proposed RGB-D
salient object detection model based on MFFM.

By using MFFM, the cross-level complementary features
from the unimodal RGB and depth images, together with the
cross-modal and cross-level complementary features within the
multi-modal RGB-D images, are simultaneously extracted. By
cascading several MFFMs, these cross-modal and cross-level
features are preserved in a coarse-to-fine way. Besides, inspired
by [50] and [51], we also add an intermediate supervision at each
branch of MFFM to encourage the cross-modal and cross-level
feature fusion timely in each level. This will benefit the final
saliency inference greatly.

Fig. 6 illustrates the main difference between the proposed
MFFM and the Feature Fusion Module (FFM) used in most
of existing RGB-D salient detection models. As shown in
Fig. 6(a), existing FFMs, such as Complementarity-Aware Fu-
sion (CA-Fuse) module in [25] and Multi-Modal Feature Fu-
sion network (MMFFnet) in [23], are designed to capture the
cross-modal and cross-level complementary features between
the multi-modal RGB-D images for the final saliency prediction
in a coarse-to-fine way, which is denoted by the red path. In addi-
tion to the cross-modal and cross-level complementary features
within the multi-modal RGB-D images, the cross-level comple-
mentary features within each unimodal RGB or depth image are
also extracted and preserved for the final saliency prediction via
MFFM. As shown in Fig. 6(b), besides the red path that is used
to fuse and transfer the multi-modal features, two extra paths
are employed to preserve the unimodal features in MFFM. The
blue path and the orange path are designed for the RGB features
and the depth features, respectively. In this way, more rich fea-
tures will be extracted and preserved for the subsequent saliency
prediction.

C. Feature Selection Module

MFFM is able to capture the cross-modal and cross-level com-
plementary features from the multi-modal RGB-D images, as
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Fig. 7. Architecture of our proposed FSM. First, an adaptive average pooling is employed on concatenated cross-modal and unimodal features to squeeze
the spatial information of input features into channel descriptors. Then, these channel descriptors are fed into two parallel branches with mirrored structures for
aggregating local information to global information. Finally, weights for different channels of cross-modal and unimodal features are generated by a fully connected
layer.

well as the cross-level features from the unimodal RGB and
depth images. Consequently, it is also ineluctable that some
of these cross-modal and unimodal features may contain dis-
turbing information, which will lead to a performance degrada-
tion or even wrong predictions. Considering that, as shown in
Fig. 7, an FSM based on the channel-wise attention mechanism
is presented to further adaptively select highly discriminative
cross-modal and unimodal features for the final saliency predic-
tion.

Most existing networks (e.g. Squeeze-and-Excitation Net-
work (SENet) [38] and Convolutional Block Attention Module
(CBAM) [52]) carry out the channel-wise attention in two steps.
First, a global average pooling is employed to obtain a feature
descriptor which contains the global information of each chan-
nel. Second, two Fully Connected (FC) layers are employed to
fully capture channel-wise dependencies to generate weights for
each channel.

However, the global average pooling in those models may
capture only global information for each channel of features, but
neglects some meaningful local information within each channel
of features. For example, as shown in Fig. 8, if only employing
global information captured by the global average pooling for
selecting highly discriminative features, similar weights may
be generated for features in Fig. 8(c) and (d), due to the fact
that those features have similar global information, though the
features in Fig. 8(c) contain some disturbing local information in
the regions marked by red boxes. As a result, inaccurate saliency
maps may be deduced (e.g., the local saliency maps in the red
boxes of Fig. 8(e)).

Considering that, in addition to global information, local in-
formation is also employed to select highly discriminative fea-
tures in the proposed FSM. Specifically, in the first step of our
proposed FSM, an adaptive local average pooling, instead of
global average pooling, is employed to squeeze the spatial in-
formation of input features into channel descriptors. As shown
in Fig. 9, given the input features X ∈ RC×W×H containing C
channels of feature maps of size W ×H , each channel of fea-
tures xc ∈ RW×H in X are first divided into W ′ ×H ′ blocks
equally. Then the average pooling is performed on each block

Fig. 8. Illustration of some features selected by jointly using the global and
local information (i.e., by employing the proposed FSM) or only by using global
information (i.e., by employing the SE block in SENet [38] as an example). (a)
RGB images; (b) Depth images; (c) and (d) Some feature maps from MFFM.
The red values and blue values are the channel weights generated by FSM and
SE block, respectively. (e) Saliency maps deduced by the features from the SE
block; (f) Saliency maps deduced by the features from our proposed FSM; (g)
Ground truth. SE block tends to generate similar weights for features in (c)
and (d) as a result of the following fact. These features in (c) and (d) contain
similar global information, although the features in (c) contain some disturbing
information in the local regions marked by the red boxes. While, the proposed
FSM tends to align higher weights to (c) than those to (d), which owes to the
joint local and global information employed by our proposed FSM.

Fig. 9. Illustration of the adaptive average pooling in the proposed FSM.

and a descriptor fc ∈ RW ′×H ′
for the current channel is ob-

tained.
As shown in Fig. 7, to establish the relations of different chan-

nel descriptors with less parameters, the channel descriptors
F = [f1, f2, ..., fc] ∈ RC×W ′×H ′

from the first step of FSM are
fed into two parallel branches with mirrored structures, instead
of simply employing a convolutional layer with kernel size of
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W ′ ×H ′, in the second step. In one of the two branches, a hori-
zontal convolutional layer with kernel size ofW ′ × 1 is first em-
ployed and then a vertical convolutional layer with kernel size of
1×H ′ is employed. Accordingly, in the other branch, a vertical
convolutional layer with kernel size of 1×H ′ and a horizontal
convolutional layer with kernel size of W ′ × 1 are sequentially
employed. Each convolutional layer in the two branches is fol-
lowed by the ReLU activation function. By this way, the parame-
ters will be reduced fromC ×W ′ ×H ′ toC × 2× (W ′ +H ′).

Finally, the outputs from the two branches are concatenated
and then fed into a FC layer with the Sigmoid function to
generate the channel weights ω ∈ RC×1×1 for the input fea-
tures X. After obtaining the channel weights, the final output
Y ∈ RC×W×H of FSM is obtained by multiplying the input
features X with the weights ω in a channel-wise way. In sum-
mary, given the features {H1

RGB ,H
1
Depth,H

1
RGB−D} from the

output of MFFM, FSM can be mathematically expressed by

Y = X ◦ ω, (4)

where ◦ denotes the channel-wise multiplication. X denotes the
input features for the proposed FSM, which is constructed by
concatenating the features {H1

RGB ,H
1
Depth,H

1
RGB−D}, i.e.,

X = Cat(H1
RGB ,H

1
Depth,H

1
RGB−D). (5)

The channel-wise weights ω are computed by

ω = σ(Cat(δ(HConv(δ(VConv(AAP(X), γ3)), γ2)),

δ(VConv(δ(HConv(AAP(X), γ4)), γ5)), ), γ1). (6)

Here, σ(∗, γ1) denotes a FC layer with the Sigmoid function
and parameters γ1. HConv(∗, γ2) and HConv(∗, γ5) are two
horizontal convolutional layers with parameters γ2 and γ5, re-
spectively. VConv(∗, γ3) and VConv(∗, γ4) are two vertical
convolutional layers with parameters γ3 and γ4, respectively.
AAP(∗) denotes the Adaptive Average Pooling.

By this means, the global information as well as the local in-
formation is simultaneously exploited in the proposed FSM to
determine whether a feature from MFFM is highly discrimina-
tive. Thereby, as shown in Fig. 8, higher weights are assigned to
the features in Fig. 8(d) than in Fig. 8(c) by the proposed FSM,
due to the fact that the features in Fig. 8(d) contain more accu-
rate saliency cues than those in Fig. 8(c), especially in the local
regions marked by red boxes. As a result, the saliency maps de-
duced by the features from FSM are closer to the ground truth
than those deduced by the features from SE blocks.

D. Loss Function

As in [7] and [31], the loss function ζ used to train our network
contains two terms, i.e,

ζ = ζsal + ζedge, (7)

where ζsal denotes the saliency loss to force the predicted
saliency map as close to the ground truth as possible. ζedge
denotes the edge-preserving loss to sharp the boundary of the
predicted saliency map.

Saliency Loss: As shown in Fig. 5, we use a multi-scale in-
termediate supervision at each branch of MFFM to encourage

the fusion of cross-modal and cross-level features timely in each
level. Suppose S denotes the final saliency map deduced by our
proposed method and Sm

RGB , Sm
Depth and Sm

RGB−D denote the
intermediate saliency maps deduced from the RGB, depth and
RGB-D branches of MFFM in the m-th level, respectively. The
saliency loss ζsal is then defined by:

ζsal = L(S,Y) +
∑
m

(
L(Sm

RGB ,Y
m) + L(Sm

Depth,Y
m)

+L(Sm
RGB−D,Ym)

)
, (8)

where L(S,Y) denotes the cross-entropy loss between the
saliency map S and the ground truth Y, i.e.,

L(S,Y) = Ylog(S) + (1−Y)log(1− S). (9)

Similarly, L(Sm
RGB ,Y

m), L(Sm
Depth,Y

m), L(Sm
RGB−D,Ym)

denote the cross-entropy loss between the saliency maps Sm
RGB ,

Sm
Depth, Sm

RGB−D and the ground truth Ym in m-th level, re-
spectively. Ym is sampled from Y and has the same size as that
of Sm

RGB , Sm
Depth or Sm

RGB−D.
Edge-preserving Loss: To compute the edge-preserving loss

ζedge, two edge maps are first obtained by performing the Sobel
operator 1 on the finally predicted saliency map S and the
ground-truth Y, respectively, as suggested in [7] and [31]. Then
ζedge is computed as the sum of the absolute differences between
the two edge maps [31], i.e.,

ζedge = |Sobel(Y)− Sobel(S)|1, (10)

where Sobel(Y) and Sobel(S) are the edge maps of Y and S,
respectively, by using Sobel operator. | • |1 denotes the l1-norm
of a matrix and is computed as the sum of the absolute values of
all the elements in the matrix.

IV. EXPERIMENTS

A. Datasets

We conduct several experiments on four publicly available
datasets: NJU2000 [53], NLPR [39], STEREO [54] and SIP
[20]. NJU2000 [53] contains 2003 stereo RGB-D image pairs
with diverse scenarios. NLPR [39] contains 1000 RGB-D im-
age pairs captured by Microsoft Kinect, covering a variety of
indoor and outdoor scenes under different illumination condi-
tions. STEREO [54] consists of 797 pairs of binocular RGB-D
images. SIP [20] is a newly proposed dataset, which consists of
1000 accurately annotated high-resolution RGB-D image pairs.
For a fair comparison, we follow the same data split way as in
[6]. Specifically, 1400 samples from NJU2000 and 650 samples
from NLPR are randomly selected as the training set. The rest
of images are selected as the testing set.

B. Evaluation Metrics

Some standard metrics, including Precision-Recall (PR)
curves, F-measure scores, Mean Absolute Error (MAE) and

1Other edge detection operators (e.g., the traditional image gradient operator,
or edge extraction network [51]) may also be employed.
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S-measure [55], are employed for performance evaluation.
Precision and Recall are computed by comparing the ground
truth and the binarized saliency maps under different thresholds
(i.e., from 0 to 255). For MAE, lower values are better and for
others, higher values are desirable.

F-measure is a harmonic mean of Precision and Recall and
is formulated by:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
, (11)

where, β2 is set to 0.3, as suggested in [53]. Following [53],
max F-measure (maxF ) and mean F-measure (meanF ), i.e.,
max and mean scores of all the Fβ values by using different PR
pairs, are provided for comparisons.

MAE is computed as the average difference between the pre-
dicted saliency map S and the ground-truth map Y, i.e.,

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−Y(x, y)|, (12)

where W and H are the width and height of the saliency map
(or ground truth), respectively.

S-measure is used to evaluate the structural similarity between
the saliency map and the ground truth, which combines a region-
aware structural similarity (Sr) and an object-aware structural
similarity (So), i.e.,

Smeasure = α ∗ So + (1− α) ∗ Sr, (13)

where α ∈ [0, 1] is the balance parameter and is set to 0.5 as
default. More details are seen in [55].

C. Implementation Details

We implement our experiments by using the Pytorch [56] tool-
box on an NVIDIA 1080Ti GPU. First, the initial parameters of
those VGG-16 nets [13] employed for unimodal feature extrac-
tion are pre-trained on ImageNet dataset [43]. Other parameters
of the proposed model are randomly initialized with Xavier ini-
tialization [57]. Then, the entire model is end-to-end trained by
employing the Stochastic Gradient Descent (SGD) optimizer
with Nesterov momentum [58]. Here, the initial learning rate,
weight decay and mini-batch size of the SGD optimizer are set
to 0.002, 0.0005 and 4, respectively. Meanwhile, the learning
rate will be decayed by a factor of 0.8 in every 30 epochs. Dur-
ing training and testing, all the images are rescaled to the size
of 224× 224 by employing a bilinear interpolation as in [31].

D. Ablation Experiment and Analysis

In order to verify the validity of these proposed modules in
our network, we will perform several ablation experiments on
the NJU2000 dataset in this section.

1) Res_ASPP: In order to demonstrate the validity of the
proposed Res_ASSP module for the multi-scale contextual fea-
ture extraction from the unimodal RGB and depth images, we
first remove the Res_ASSP module from our proposed method
and obtain another version (w/o Res_ASPP, for short) of our
method. After that, two more salient object detection methods

TABLE II
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS ON RES_ASPP MODULE

TABLE III
QUANTITATIVE RESULTS BY USING DIFFERENT FUSION MODULES

(i.e., w/ ASPP and w/ Res_ASPP, for short) are obtained for
comparisons by adding serval ASPP and Res_ASPP modules in
w/o Res_ASPP, respectively. In w/ ASPP, the dilation rates for
all the employed ASPP modules are set to the same values as
in [32] (i.e., 6/12/18/24). In w/ Res_ASPP (i.e., our proposed
method), the dilation rates for the employed Res_ASPP modules
are set as in Table I. The quantitative results shown in Table II
demonstrate that adding ASPP does not increase and even de-
grades the saliency detection performance because of the too
large dilation rates. In contrast, the salient object detection per-
formance can be greatly improved by using Res_ASPP, which
may be due to the smaller dilation rates in Res_ASPP.

2) MFFM: Several versions of our proposed method (i.e.,
S_ RGB, S_Depth, M_FFM and M_MFFM, for short, respec-
tively) are provided to test the validity of the proposed MFFM.
In S_RGB and S_Depth, only one of the unimodal RGB or
depth image is used as the input. In M_FFM and M_MFFM,
the multi-modal RGB_D images are used as the input. The only
difference between the two methods is that the traditional FFM
in Fig. 6(a) is used to fuse the features from the source images in
M_FFM, while the proposed MFFM is employed in M_MFFM.
As well, for fair comparisons, the proposed FSM is removed
from these methods. That is to say, the extracted features from
the RGB-D image are directly employed to predict the saliency
maps in S_RGB and S_Depth. The features from FFM/MFFM
are also directly employed for saliency prediction. Some visual
and quantitative results obtained by different methods are shown
in Fig. 10 and Table III.

As expected and shown in the first two rows of Fig. 10,
both M_FFM and M_MFFM perform better than S_RGB and
S_Depth. This demonstrates that the fused cross-modal features
from the multi-modal RGB-D images will provide more saliency
cues for the saliency detection and thus obtain better saliency de-
tection results than those obtained by the features from one of the
unimodal input images in most cases. However, as shown in the
last four rows of Fig. 10, when one of the input images has much
poor visual quality or contains affluent saliency cues, M_FFM
performs worse than S_RGB or S_Depth. This indicates that
the fused features from the multi-modal input images may be
degraded because of the features from one of the input images
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Fig. 10. Illustration of the validity of our proposed MFFM. (a) RGB images; (b) Depth images; (c) Saliency maps obtianed by S_RGB; (d) Saliency maps
obtained by S_Depth; (e) Saliency maps obtained by M_FFM; (f) Saliency maps obtained by M_MFFM; and (g) Ground truth.

Fig. 11. Illustration of the validity of FSM. (a) RGB images; (b) Depth images; (c) Saliency maps deduced by using the features from the RGB branch of MFFM;
(d) Saliency maps deduced by using the features from the depth branch of MFFM; (e) Saliency maps deduced by using the features from the RGB-D branch of
MFFM; (f) Saliency maps deduced by using the features from FSM; (g) Ground truth; (h) Features with the highest weights from the RGB branch of MFFM; (i)
Features with the highest weights from the depth branch of MFFM; and (j) Features with the highest weights from the RGB-D branch of MFFM.

with poor qualities. Accordingly, the saliency detection perfor-
mance is also degraded by just using the fused features from
the multi-modal input images in these special cases. Different
from FFM, MFFM preserves the features from each unimodal
image as well as those fused features from multi-modal images.
As a result, more saliency cues will be provided for the saliency
prediction by MFFM. As shown in Fig. 10(f), M_MFFM can

still obtain satisfactory results for these special images. The
quantitative results of different methods are shown in Table III,
which demonstrates the validity of the proposed MFFM for
multi-modal image salient object detection again.

3) FSM: As shown in Fig. 11, we illustrate some typical
cases to verify the validity of the proposed FSM. In addition,
the weights learned by FSM for some channels of features are
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Fig. 12. Some visualization results of different salient object detection methods. As shown in the first two rows, most existing models work well in simple scenes.
However, as shown in the rest of rows, most existing works may fail to detect those salient objects under some challenging cases (e.g., depth images with poor
visual qualities in the second and third rows, RGB images with low contrast in the fifth and sixth rows or complex scenes in the last two rows), while the proposed
model can still obtain good saliency results.

also provided in Fig. 11 to better demonstrate the validity of the
proposed FSM for feature selection.

As shown in the first two rows of Fig. 11, better saliency maps
are usually obtained by using the cross-modal features from the
RGB-D branch of MFFM in the proposed method than those
unimodal features from the RGB or depth branch of MFFM.
However, as shown in the last four rows of Fig. 11, the saliency
maps deduced by using the features from the RGB-D branch
of MFFM are not better and even worse than those deduced by
using the features from the RGB or depth branch of MFFM,
when one of the input images has much poor visual quality or
contains affluent saliency cues.

The weights learned by FSM are also consistent with those
visual results. As shown in Fig. 11, the weights assigned to the
features from the RGB-D branch are higher than those assigned
to the features from the RGB and depth branches for the images
in the first two rows. Differently, FSM assigns higher weights
to the features from the RGB or depth branch than those from
the RGB-D branch for the images in the last four rows. This
indicates that FSM may adaptively select those features with
higher discriminative ability for the final saliency prediction.
As a result, the saliency maps deduced by using those selected
features with FSM are very close to the ground truth.

As shown in Table IV, we also compare the proposed FSM
with some other attention-based modules, including Convolu-
tional Block Attention Module (CBAM) [52], Global Context
(GC) block [59] and Squeeze-and-Excitation (SE) block [38].

TABLE IV
QUANTITATIVE RESULTS BY USING DIFFERENT ATTENTION MODELS

In Table IV, M_MFFM mentioned above is seen as the baseline
method, where FSM is not utilized and the features from MFFM
are directly employed to predict the final saliency map. It can
be easily found from Table IV that FSM can significantly im-
prove the saliency detection performance of the baseline method.
Compared with the other attention modules, FSM may more ac-
curately select those features with highly discriminative ability
for the saliency prediction from the outputs of MFFM. This owes
to the fact that the local and global information from different
channels of features are jointly adopted in FSM to evaluate the
importance of each channel.

E. Comparison with the State-of-the-Art Models

We compare our model with seven State-Of-The-Art (SOTA)
CNNs based RGB-D salient object detection models, includ-
ing D3Net [20], CPFP [28], AF [31], TSAA [27], PCA [25],
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TABLE V
QUANTITATIVE RESULTS BY USING DIFFERENT METHODS. MAX F-MEASURE (maxF ), MEAN F-MEASURE (meanF ), S-measure, AND MAE ARE EMPLOYED

FOR COMPARISONS. FOR maxF , meanF , AND S-measure, HIGHER VALUES ARE DESIRABLE AND FOR MAE, LOWER VALUES ARE DESIRABLE. THE BEST

RESULTS ARE SHOWN IN BOLD

Fig. 13. PR curves of different methods.

CTMF [24] and MMCI [26]. Some visualization results are il-
lustrated in Fig. 12. As shown in the first two rows of Fig. 12, all
of the methods mentioned here perform well for those images
with simple scenes. However, as shown in the last four rows of
Fig. 12, when one of the input images has much poor visual
quality or already contains affluent saliency cues, these SOTA
methods cannot obtain desirable saliency detection results. For
example, some salient objects are not uniformly detected, or
parts of the backgrounds are not well suppressed during the
saliency detection. As shown in the last row of Fig. 12, when

the backgrounds are much complicated, the salient objects are
not even detected by some of these SOTA methods. Differently,
our method can still effectively detect the salient objects from
these RGB-D images with these challenging scenes. This may
be due to the fact that the cross-modal features from the RGB-D
images and the unimodal features from the RGB and depth im-
ages are simultaneously preserved for saliency prediction in our
proposed method. The quantitative results in Table V and Fig. 13
also show that our model significantly outperforms the others in
terms of maxF , meanF , MAE, S-measure and PR curves.
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V. CONCLUSION

A novel RGB-D salient object detection model has been pro-
posed in this paper, where the cross-level and cross-modal fea-
tures from the RGB-D image pairs, as well as the cross-level
unimodal features from the RGB images and the depth images,
are simultaneously captured and preserved during the fusion pro-
cess by using a proposed MFFM. Furthermore, by virtue of the
proposed FSM based on the channel-wise attention mechanism,
some channels of features with higher discriminative ability are
selectively boosted for the final saliency prediction and some
channels of features with less useful information are also sup-
pressed. As a result, when one of the input images has much
poor visual quality or contains affluent saliency cues, or when
the backgrounds of the scenes are much complex, the proposed
method can still effectively detect the salient objects from the
scenes. Numerous of experiments have demonstrated the supe-
riorities of the proposed method over the state-of-the-arts.
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