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Integrating Part-Object Relationship and Contrast
for Camouflaged Object Detection

Yi Liu , Dingwen Zhang , Member, IEEE, Qiang Zhang , and Jungong Han

Abstract— Object detectors that solely rely on image contrast
are struggling to detect camouflaged objects in images because
of the high similarity between camouflaged objects and their
surroundings. To address this issue, in this paper, we investi-
gate the role of the part-object relationship for camouflaged
object detection. Specifically, we propose a Part-Object rela-
tionship and Contrast Integrated Network (POCINet) covering
both search and identification stages, where each stage adopts
an appropriate scheme to engage the contrast information
and part-object relational knowledge for camouflaged pattern
decoding. Besides, we bridge these two stages via a Search-to-
Identification Guidance (SIG) module, in which the search result,
as well as decoded semantic knowledge, jointly enhances the
features encoding ability of the identification stage. Experimental
results demonstrate the superiority of our algorithm on three
datasets. Notably, our algorithm raises Fβ of the best existing
method by approximately 17 points on the CPD1K dataset. The
source code will be released soon.

Index Terms— Camouflaged object detection, contrast, part-
object relationships, encoder-decoder, multi-stage.

I. INTRODUCTION

IN VISUAL surveillance [1]–[6], camouflaged object detec-
tion is an interesting yet challenging task, where the

goal is to search and segment out those objects concealed
in their surroundings. High intrinsic similarity between the
target object and the background makes camouflaged object
detection much more challenging than the traditional visual
detection tasks, such as salient object detection [7]–[15] and
generic object detection [16]–[18]. Recently, camouflaged
object detection has been receiving increasing attention due to
its potential applications in real-life scenarios, including wild
animals preservation, new species discovery, medical image
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Fig. 1. Problem illustrations for the contrast and part-object relational cues
used for camouflaged object detection. (a) Image; (b) GT; (c) PSPNet [28];
(d) BASNet [29]; (e) SINet [27]; (f) TSPOANet [30]; (g) OURS. Contrast-
induced approaches (i.e., (c)–(e) in the figure) miss some object parts,
especially the object boundaries. Part-object relational method (i.e., (f) in the
figure) produces blurry object boundaries and some “holes”.

segmentation [19], integrated circuits testing [20], [21], and
art [22], [23], etc.

Early camouflaged object detectors attempt to extract dis-
criminative hand-crafted features [24], e.g., color, edge, and
texture. Despite their simpleness, such features have limited
representation capacity in extracting useful visual patterns.
In light of the extraordinary representation ability of deep
features, research focus has shifted recently onto deep learning
based frameworks for camouflaged object detection [25]–
[27]. From a systemic perspective, these methods explore rich
distinguishable features with primitive contrast information
to identify the camouflaged object in a scene. However,
a striking resemblance between foreground and background
challenges the extraction of distinguishable features, giving
rise to a failure to recognize the camouflaged object from
the background. For instance, as shown in Fig. 1(c)-(e), some
parts of the camouflaged object, especially the object bound-
aries, cannot be identified from its surroundings, resulting in
the incomplete segmentation of the camouflaged object. The
above observation reveals that the exploitation of the contrast
information only could not be able to solve the problem.

In nature, an object is composed of several relevant parts,
and on the other hand, associated parts can form a whole
object. Such part-object relational property can aid in address-
ing the above problem of incomplete segmentation. Especially
in [30], it successfully captures the complete salient object by
finding relevant object parts, rather than distinctive regions,
in a scene. Inspired by its promising results, this paper
takes the initiative to incorporate such part-object relational
property into camouflaged object detection. Fig. 1 shows
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Fig. 2. Illustration for different interactions between contrast and part-object
relational cues. (a) TSPOANet [30]; (b) OURS. The deconvolutional decoding
mechanism pays ZERO attention to the engagement of the contrast and
part-object relational cues. Alternatively, we integrate these two cues in the
decoder via the proposed POGU module, which will be introduced in Sec. III.

the comparison between the part-object relational approach
(TSPOANet1 [30], i.e., Fig. 1(f)) and three contrast-induced
approaches (Fig. 1(c)-(e)). It is clear that TSPOANet [30] is
advantageous, especially when considering the completeness
of the segmented objects. However, a closer look at the result
generated by directly using TSPOANet [30] for camouflaged
object detection reveals that it is far from satisfactory due
to: 1) blurry object boundaries; 2) “holes” within the object.
We further analyze the decoder of TSPOANet [30], and
realize that the deconvolutional decoding mechanism pays
ZERO attention to the engagement of part-object relational
knowledge and contrast cues, which is shown in Fig. 2(a).
No interaction of these two informative cues may adversely
make both of their representation abilities weaker after pro-
longed deconvolutions, thus leading to the issues of the blurry
boundary and the inner details deletion.

To address the above problem, in this paper, we propose
a Part-Object relationship and Contrast Integrated
Network (POCINet) containing two stages of search
and identification for camouflaged object detection,
each of which adequately engages contrast information
and part-object relational knowledge during decoding.
Specifically, the encoder cascades a Contrast Information
Exploration (CIE) subnetwork and a Part-Object Relationship
Exploration (PORE) subnetwork. In such a way, contrast
features learned by CIE could provide rich features for
PORE at the deep layers to explore part-object relational
knowledge. The decoder enables the combination of the two
critical information via a Part-Object relationship Guidance
Upsampling (POGU) module, which is shown in Fig. 2(b).
Concretely, the part-object relational knowledge provides
object completeness as prior information, which in turn guides
the contrast features to achieve more primitive camouflaged
cues. Doing so helps to locate the camouflaged object by
extracting tight relevant object boundaries in the search stage,
as well as grabbing inner object details and complete object
shapes in the identification stage.

In addition, the existing approaches either parallel a classi-
fication network and a segmentation network [26] (as shown
in Fig. 3(a)) or directly feed features from the search network

1We re-train TSPOANet [30] using the camouflaged object detection
benchmarks.

Fig. 3. Different camouflaged object detection pipelines. (a) An identification
branch and a search branch are parallelized; (b) The features of the search
branch are directly fed into the identification branch; (c) OURS: A bridge
block is put in place to connect the search and identification stages.

Fig. 4. Problem illustrations for different camouflaged object detection
pipelines. (a) Image; (b) Parallel [26]; (c) Direct feeding [27]; (d) OURS;
(e) GT. A parallel of two may cause a failure to search the camouflaged object
(top two rows in the figure) or background noises (bottom two rows in the
figure). Direct feeding may cause object details missed. Our framework can
cater to these problems with accurate object locations and sufficient object
details.

into the identification network [27] (as shown in Fig. 3(b))
without equipping the well-coupled search and identification
streams. These pipelines may cause some problems. As shown
in Fig. 4, the parallel pipeline may cause a failure to serach
the camouflaged object (top two rows of Fig. 4) or background
noises (bottom two rows of Fig. 4), thereby having no abilities
to segmenting the camouflaged object out from the scene.
As shown in the second and fourth rows of Fig. 4, the
direct feeding pipeline may cause some object details missed.
To solve this problem, we develop a Search-to-Identification
Guidance (SIG) module to bridge these two stages (as shown
in Fig. 3(c)), resulting in a SIG-induced CIE subnetwork
in the identification stage. Here, the search result and the
hybrid features decoded from the search stage are employed
to empower the feature extraction ability of the identification
stage. As highlighted in Fig. 1 and Fig. 4, such a framework
enables our model to detect more complete camouflaged
objects than other models do.

To sum up, the contributions of this paper are described as
follows.
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(1) We propose a POCINet to detect the camouflaged object,
enabling to integrate the contrast information and part-object
relational knowledge via a POGU module. To the best of our
knowledge, it is the earliest attempt to involve the part-object
relational property in camouflaged object detection, and also
initiates the integration of the deep contrast and part-object
relational cues.

(2) We present a SIG module to bridge the search and
identification stages for camouflaged object detection so that
the search result and decoded camouflaged cues of the search
stage empower the feature extraction ability of the identifica-
tion stage.

(3) Extensive experiments demonstrate the superiority of
our algorithm on three datasets. Especially on the CPD1K [31]
dataset, our algorithm surpasses the best existing algorithm up
to 17 points on Fβ .

The paper is organized as follows. Sec. II reviews the
works related to our method. Sec. III details the proposed
camouflaged object detection network. Sec. IV conducts exper-
iment and analysis to evaluate the proposed method. Sec. V
concludes this paper.

II. RELATED WORK

In this section, we review the works that are highly relevant
to our method, covering camouflaged object detection, part-
object representation, and multi-stage strategy.

A. Camouflaged Object Detection

Research devoted to camouflaged region detection has a
long and rich history [32], [33]. For example, Pan et al. [34]
attempted to detect camouflaged objects via a 3D convexity
model. Liu et al. [35] detected the foreground object by
optimizing top-down information. Sengottuvelan et al. [35]
recognized the camouflaged object via a co-occurrence matrix
method. An overall review of this history can be found in [36].

The above methods encountered performance bottlenecks
because of the limited representation abilities of handcrafted
features. In view of the powerful representation ability of
deep features, Zheng et al. [25] explored the possibility of
using a deep CNN to detect camouflaged people. From the
biological perspective, Le et al. [26] developed a segmentation
stream to segment the camouflaged object out, and a classi-
fication stream to recognize the existence of the camouflaged
object in parallel. Fan et al. [27] consolidated this research
by proposing a deep search identification network. Despite
growing interests, the research on deep camouflaged object
detection requires more dedication, given unsatisfactory results
until now.

Our work differs from the existing works in two aspects:
1) Instead of solely relying on deep contrast semantics for
camouflaged object detection, we involve the part-object rela-
tional property in camouflaged object detection, and further
integrate the contrast cues and part-object relational cues to
predict the object details and object shape of the camouflaged
object in the complex scene. 2) Rather than simply connecting
the search and identification streams, we design a more
sophisticated connection, i.e., SIG, to bridge the gap between
the search and identification stages.

B. Part-Object Representation

The study of part-object representation can date back sev-
eral decades ago. For example, Biederman [37] proposed
a recognition-by-component theory for image understanding.
Krivic and Solina [38] recognized articulated objects based
on part-level descriptions obtained by the Segmentor sys-
tem [39]. Pentland [40] segmented an image into roughly
convex component parts for further recognition and pre-
diction via 3D deformable models. Felzenszwalb [41] used
the deformable part models for cascade object detection.
Girshick [42] designed a CNN to formulate the deformable
part model using a distance transform pooling, object geometry
filters, and maxout units. Hinton et al. [43]–[45] explored
the part-whole spatial relationships by a Capsule Network
(CapsNet), which routes low-level capsules (parts) to their
familiar high-level ones (wholes). Liu et al. [30] involved
the part-object relational property to solve the incomplete
segmentation problem of salient object detection.

Inspired by [30] that explored the part-object relationships
encoded in CapsNet [45] for salient object segmentation,
in this paper, we adopt CapsNet as the PORE subnetwork.
However, beyond simple exploitation of several deconvolu-
tions for decoding [30], our decoder integrates the contrast
information and the part-object relational knowledge, thus
helping to predict the complete object shape with sufficient
object details.

C. Multi-Stage Strategies

Multi-stage networks have been widely used and explored
in many computer vision tasks. For example, Cheng et al. [46]
proposed a multi-stage encoder-decoder structure for semantic
segmentation, where a supervise-and-excite framework was
designed to connect two stages. Newell et al. [47] stacked
multiple hourglass networks for pose estimation. Yu et al. [48]
repeatedly applied the segmentation probability map from
the previous iterations as spatial priors to refine the current
iteration. Shen et al. [49] utilized multiple side outputs with
different-size receptive fields from the lower stage to provide
multi-scale contextual boundary information for the consec-
utive learning. Wang et al. [50] refined the salient object
detection performance via multiple stages, in each of which
a refinement network merged high-level semantic knowledge
encoded by the master network with rich low-level features
encoded by the refinement network. Deng et al. [51] refined
the initial saliency prediction map with a sequence of residual
refinement blocks.

In contrast, we simultaneously adopt the coarse camouflaged
map and features of the search stage to enhance the ability of
feature extraction of the following identification stage.

III. PROPOSED FRAMEWORK

Fig. 5 exhibits the overall architecture of the proposed deep
camouflaged object detection network, which consists of the
search and identification stages. Corresponding to each stage,
a CIE subnetwork and a PORE subnetwork are cascaded in the
encoder. On top of that, these two camouflaged semantics are
integrated into the decoder via a POGU module. Especially,
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Fig. 5. The overall architecture of the proposed framework, which consists of two stages for search and identification. Within each stage, a CIE subnetwork
and a PORE subnetwork are cascaded in the encoder, while these two camouflaged semantics are integrated into the decoder via a POGU module. Besides,
a SIG module is designed to connect two stages, resulting in a SIG-induced CIE subnetwork in the identification stage. The final camouflaged map is achieved
by integrating those maps output by two stages.

we bridge these two stages via a SIG module, resulting in a
SIG-induced CIE subnetwork in the identification stage. The
final camouflaged map is achieved by integrating those maps
output by two stages. The details will be elaborated in the
following.

A. Search Stage

The search stage of POCINet consists of a CIE subnetwork
and a PORE subnetwork in the encoder, and a POGU module
in the decoder.

1) CIE Subnetwork: For the search stage, the CIE subnet-
work stacks five layers with different sized receptive fields
to encode different semantics. Following the previous works,
we choose the VGG16 [52] model as the backbone net-
work. Concretely, five layers are initialized by Conv1_2,
Conv2_2, Conv3_3, Conv4_3, and Conv5_3 of the pretrained
VGG16 [52] model, respectively.

2) PORE Subnetwork: Inspired by the success of the explo-
ration of the part-object relationship by CapsNet in solv-
ing the problem of incomplete object segmentation in [30],
we adopt CapsNet to implement PORE subnetwork. Con-
cretely, we involve a mirror CapsNet to capture the part-object
relational cues. As shown in the PORE subnetwork of Fig. 5,
the features obtained by the CIE subnetwork are transformed
into capsule feature maps by a Primary Capsule (Prima-
ryCaps) layer. On top of that, a Convolutional Capsule (Con-
vCaps) layer and a Deconvolutional Capsule (DeconvCaps)
layer are designed for capsules routing via the EM routing
algorithm [53] to form a mirror CapsNet, which is aimed
to explore the part-object relationships of the input image.
The details of PrimaryCaps and ConvCaps can be found

in [30]. Especially in the DeconvCaps layer, the previous
capsule feature maps are upsampled for routing, which can
output high-resolution capsule feature maps while retaining
part-object relationships.

3) POGU: The encoded contrast semantics and part-object
relational semantics help to capture the object details and
the object completeness, respectively. Therefore, two kinds of
semantic knowledge can complement each other. Considering
this point, the decoder is designed to integrate these two
semantics with the purpose of generating more primitive cam-
ouflaged cues for further prediction, which is implemented by
a POGU module. The architecture of POGU is shown in Fig. 6,
which consists of three phases, i.e., features combination,
self-attention promotion, and Part-Object Relationship (POR)
guidance. Suppose XCIE and XPORE are the encoded contrast
and part-object relational semantics, respectively, and XDec
is the decoded deep-level semantics. W , H , and C represent
the width, height, and channel number of the corresponding
feature maps, respectively. Each phase will be elaborated in
the following.

a) Features combination: Features combination intends
to incorporate the encoded contrast semantics and the decoded
semantics. As illustrated in Fig. 6, the combined features
FCom ∈ RW×H×C can be computed by

FCom = fCat ( fDia (XCIE; WDia) , fU (XDec; WU); WCat) ,

(1)

where fDia is a stack of multiple dilation layers with dilation
rates of 1, 3, 5, and 7, helping to capture rich context
information under various receptive fields without increasing
the network parameters. fU is an upsampling layer. fCat is
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Fig. 6. Illustration for POGU, which consists of three phases, i.e., features
combination, self-attention promotion, and POR guidance. XCIE and XPORE
are the encoded contrast and part-object relational semantics, respectively, and
XDec is the decoded deep-level semantics. W , H , and C represent the width,
height, and channel number of the corresponding feature maps, respectively.
CPOR is the number of the corresponding capsule types. N = W × H .

implemented by one concatenation and one 1×1 convolution.
W∗ represents the learned network parameters.

b) Self-attention promotion: Self-attention promotion is
used to promote those informative features while suppressing
less important ones by a channel-wise attention. As shown in
Fig. 6, the process can be illustrated below.

Step 1: Channel attention. The combined feature maps FCom
is used to compute the channel attention map fCh ∈ RC×1, i.e.,

fCh = fRes (FCom) ⊗ fCh (FCom; WCh) , (2)

where fRes represents the reshape operation. fCh is imple-
mented by one 1 × 1 convolution and reshape. ⊗
means the matrix multiplication. fRes (FCom) ∈ RC×N ,
fCh (FCom; WCh) ∈ RC×1, and N = W × H .

Step 2: Features promotion. The promoted feature maps
FPro ∈ RW×H×C can be achieved by

FPro = FCom � ftile (fCh) , (3)

where ftile and � are the operations of tensor expansion and
element-wise multiplication, respectively.

c) Difference to self-attention in transformer networks:
Transformer networks implement self-attention by learning
query, key, and value components and then determining the
self-attention by computing the similarity between query and
key components. While our self-attention promotion simply
computes the channel importance for further promoting those
informative channels, which helps to promote the features
themselves. Therefore, our self-attention promotion is simpler
than that in transformer networks.

Fig. 7. Illustration for the SIG-induced CIE subnetwork, which consists of
three phases, called features combination, searching guidance, and features
aggregation. YCIE is the encoded features of the identification stage. YDec
and YSearch are the decoded features and the coarse detection result of the
search stage.

d) Difference to the attention mechanism in SINet [27]:
The difference between the attention mechanisms in our model
and SINet [27] can be illustrated as follows. SINet [27]
adopted a Gaussian filter and a maximum function as the
attention mechanism, which can filter out some noises while
highlighting the detected regions, regardless of whether they
are the camouflaged regions or not. Differently, we carry out
a channel-wise attention via a series of operations to highlight
those informative channels of feature maps, which helps to find
the important channels that capture the camouflaged regions.

e) POR guidance: POR guidance is proposed to adopt
the encoded part-object relational semantics, which captures
the object wholeness prior, to guide the promoted features
FPro for more accurate and complete camouflaged semantics.

XPORE is first upsampled into FPOR ∈ RW×H×CPOR , where
CPOR is the number of the corresponding capsule types. The
current guided feature maps FDec, which are also the feature
maps of the current decoder layer, can be achieved by

FDec = fCat (FPOR, FPro; WCat) . (4)

FDec efficiently integrates the encoded contrast and
part-object relational semantics. Such practice helps to decode
more primitive camouflaged cues for prediction.

B. Identification Stage

The identification stage consists of a SIG-induced CIE
subnetwork and a PORE subnetwork in the encoder, and a
POGU module in the decoder. The PORE subnetwork and the
POGU module are similar to those of the search stage.

1) SIG-Induced CIE Subnetwork: As shown in Fig. 7, the
SIG-induced CIE subnetwork consists of three phases: features
combination, searching guidance, and features aggregation.
Suppose YCIE is the encoded features of the identification
stage. YDec and YSearch are the decoded features and the coarse
detection result of the search stage. The details of SIG will be
presented in the following.

a) Features combination: Features combination is
designed to combine the encoded contrast information YCIE
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of the identification stage and the decoded feature maps YDec
of the search stage. Doing so allows the decoded semantics
YDec of the search stage to improve the features encoding
ability of the current encoder of the identification stage.
To be specific, the combined features GCom ∈ RW×H×C can
be computed by

GCom = fCat
(

fpool (YCIE) , fDia (YDec; WDia); WCat
)
, (5)

where fpool is the average pooling operation. fDia represents
the dilation operation, as can be found in Fig. 6.

b) Searching guidance: Searching guidance is motivated
to apply the search result YSearch of the search stage to guide
the combined feature maps GCom. On the one hand, YSearch
provides a coarse detection prior including the object location
and rough details for GCom to capture more accurate camou-
flaged cues. On the other hand, GCom provides rich spatial
details to refine YSearch. Concretely, YSearch is downsampled
and concatenated with GCom, i.e.,

GCat = fCat ( fDW (YSearch; WDW) , GCom; WCat) , (6)

where fDW represents the downsampling operation.
Simultaneously, the search prediction YSearch of the search

stage roughly predicts the camouflaged value of each position,
which provides a pixel-level attention. Therefore, we utilize
YSearch to attend each channel of feature maps GCom. Specif-
ically, YSearch is first downsampled and then multiplied with
GCom. The details can be formulated as

GMul = ftile ( fDW (YSearch; WDW)) � GCom. (7)

GCat attends the features by the search prediction. GMul
masks the features with the searched camouflaged value at
each pixel position. Especially, GCat attends the features by
jointly taking into account the search map and features from
all the channels of GCom, while GMul attends the features by
involving the search result and the current channel of GCom.
Therefore, GCat tends to preserve accurate spatial details,
whereas GMul prefers to produce an accurate camouflaged
prediction for each pixel.

c) Features aggregation: To encode camouflaged cues
with good accuracy and spatial details, we integrate these
three types of information together, including GCom, GCat, and
GMul, i.e.,

GCIE = GCom ⊕ GCat ⊕ GMul, (8)

where ⊕ means the operation of element-wise addition.
GCIE represents the feature maps of the current-layer SIG-

induced CIE subnetwork. In Eq. (8), three enhanced features
are integrated to enhance the features encoding ability of the
identification stage, helping identify the camouflaged object in
a complex scene.

C. Loss Function

We adopt the cross-entropy loss function (lce) used in [54]
and the IoU boundary loss function (liou) to train the proposed
camouflaged object detection network. Suppose P and Q are

the predicted saliency map and corresponding ground truth.
The cross-entropy loss function lce is written as follows

lce (P, Q) = −
∑

i

[
Gi log (Pi ) + (1 − Qi ) log (1 − Pi )

]
,

(9)

where i is the pixel index.
The IoU boundary loss function liou is defined as

liou (P, Q) = 1 −
∑

i
P (i) Q (i)

∑
i

[P (i) + Q (i) − P (i) Q (i)]
. (10)

The joint loss function combines the cross-entropy loss
function and the IoU Boundary loss function, i.e.,

l(P, Q) = lce(P, Q) + liou(P, Q). (11)

IV. EXPERIMENT AND ANALYSIS

In this section, we will conduct various experiments to
evaluate our proposed method.

A. Dataset

We evaluate the performance of our model on three bench-
mark datasets, details of which are described as follows.

CHAMELEON [55] is an unpublished dataset that has
only 76 images collected from the Internet via the Google
search engine using “camouflaged animal” as a keyword.

CPD1K [31] is the earliest dataset for camouflaged people
detection, which contains 1000 images covering two scene
types, namely woodland and snowfield. The test subset has 400
images.

COD10K [27], which is collected from multiple pho-
tography websites, contains 10000 images, including 5066
camouflaged images, 3000 background images, and 1934 non-
camouflaged images. The test subset includes 2026 images.

CAMO [26] has 1250 images, which are divided into 1000
training images and 250 testing images.

B. Evaluation Metrics

We evaluate the performance of our model as well as other
state-of-the-art methods using average weighted F-measure
(Fβ ) [56], Mean Absolute Error (MAE) [56], S-measure
(Sm) [57], and E-measure (Em) [58].

A binary mask B is achieved by thresholding the saliency
map P . Precision is defined as Precision = |B ∩ Q|/|B|,
and recall is defined as Recall = |B ∩ Q|/|Q|, where Q is
the corresponding ground truth. The PR curve is plotted under
different thresholds. The F-measure is an overall performance
indicator, which is computed by

Fβ =
(
1 + β2

)
Precision × Recall

β2 Precision + Recall
. (12)

As suggested in [56], β2 = 0.3.
MAE is defined as

M AE = 1

w × h

w∑
i=1

h∑
j=1

|P (i, j) − Q (i, j)|, (13)
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TABLE I

PERFORMANCE COMPARISONS FOR ABLATION ANALYSIS. (ED + POGU)
= POCINET-SEARCH. (ED + POGU + SIG) = SIG = POCINET. THE

BEST METHOD IS MARKED BY BOLD IN EACH SUBSECTION

where w and h are the width and height of the image,
respectively.

S-measure [57] computes the object-aware and region-aware
structure similarities, denoted as So and Sr , between the
prediction and the ground truth. The S-measure value Sm can
be computed as

Sm = αSo + (1 − α) Sr , (14)

where α is set to 0.5 [57].
E-measure [58] (Em) combines local pixel values with

the image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

C. Implementation Details

The proposed model is implemented in Tensorflow [59].
To avoid over-fitting caused by training from scratch, the five
stacked convolutional layers in the search stage are initialized
by the Conv1_2, Conv2_2, Conv3_3, Conv4_3, and Conv5_3
of the pretrained VGG16 [52], respectively. The other weights
are initialized randomly with a truncated normal (σ = 0.01),
and the biases are initialized to 0. The Adam optimizer [60]
is used to train our model with an initial learning rate of
10−5, β1 = 0.9, and β2 = 0.999. The training datasets of
CAMO [26] and COD10K [27] are chosen as the training
dataset with horizontal flipping as the data augmentation
technique. We adopt the joint loss function [30], including
the cross-entropy loss function and the IoU loss function,
to train our deep framework. The inference time for each
image cropped into 352 × 352 is 0.1s, which is twice faster
than SINet [27].

D. Ablation Analysis

In this subsection, we will carry out a series of experiments
to investigate the role of each component in our framework.

1) Different Components: To better understand our frame-
work, we train different components for comparisons, includ-
ing the Encoder-Decoder (ED) model, ED + POGU, and
ED + POGU + SIG. As shown in Table I(a), the proposed
POGU module significantly improves the performance of ED,
which benefits from the integration of the contrast information
and the part-object relational knowledge. The proposed SIG
module achieves a further performance improvement, which
demonstrates the importance of the guidance from the search

Fig. 8. Visual comparisons for different components. (a) Image; (b) ED;
(c) ED + POGU; (d) ED + POGU + SIG; (e) GT.

stage for the feature extraction of the identification stage.
Besides, Fig. 8 displays the detection results of different com-
ponents. Specifically, ED that relies on contrast information
only can hardly identify the camouflaged object with low
contrast between foreground and background (top two rows
of Fig. 8) or just can capture discriminatively local regions
(bottom two rows of Fig. 8). With the aid of the proposed
POGU module that integrates the contrast information and the
part-object relational knowledge, the camouflaged object can
be localized distinguishably. Furthermore, the SIG-induced
identification stage helps to segment out the camouflaged
object wholly.

2) POGU: To investigate the effectiveness of the proposed
POGU module, we compare (ED + POGU) and a modi-
fied version, i.e., (ED + POGU-C), which is implemented
by directly concatenating the contrast information and the
part-object relational cues. Quantitatively in Table I(b), our
POGU achieves better performance with respect to Fβ , MAE,
and Sm , compared to POGU-C. Visually in the top two rows
of Fig. 9, our POGU achieves better object wholeness than
POGU-C does. As illustrated in the bottom two rows of Fig. 9,
our POGU achieves sufficient object details while POGU-C
produces some holes. This efficiently verifies the superiority
of the intelligent integration between the contrast information
and the part-object relational cues in our POGU.

3) The Part-Object Relationship Decoded Strategy: To
investigate the superiority of the part-object relationship
decoded strategy adopted in our model, we compare the search
stage of POCINet (POCINet-search) with TSPOANet [30]. For
a fair comparison, we re-train TSPOANet for camouflaged
object detection. As shown by Table I(c), POCINet-search
achieves a significant performance gain over TSPOANet.
Besides, as shown in the top two rows of Fig. 10, POCINet-
search gets more clear and complete object shapes than
TSPOANet does. As illustrated in the bottom two rows of
Fig. 10, TSPOANet misses some object details and thereby
produces some holes, which can be addressed by POCINet-
search. This benefits from the proposed POGU enabling
the integration between the contrast information and the
part-object relational cues, which helps to grab more object
details and more accurate part-object relationships in a com-
plex scene.
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Fig. 9. Visual comparisons for POGU. (a) Image; (b) ED + POGU-C;
(c) ED + POGU; (d) GT.

Fig. 10. Visual comparisons for the part-object relationship decoded
strategies. (a) Image; (b) TSPOANet [30]; (c) POCINet-search; (d) GT.

4) SIG: To investigate the effectiveness of our connections
between search and identification stages, we compare our
entire model with a modified version, called SIG-D, which is
implemented by directly concatenating the search result and
decoded features of the search stage, and the encoded features
of the identification stage. As shown in Table I(d), our SIG
outperforms SIG-D by a clear margin. As illustrated in Fig. 11,
SIG suppresses confusing background noises (the top two
rows of Fig. 11), and captures more complete object shapes
(the bottom two rows of Fig. 11), compared to SIG-D. This
improvement arises from the primitive integration between
contrast and part-object relational cues in the SIG module.

5) Role of PORE in the Identification Stage: To investigate
the role of the PORE subnetwork in the identification stage,
we train a modified version, in which the identification stage
directly shares the PORE subnetwork of the search stage,
called POCINet-PORE. As shown in Table I(e), POCINet-
PORE is inferior to POCINet-search. This might be because
the searched part-object relationships just coarsely locate the
target object with some noisy reasonings, which will degrade
the performance when applied to the identification stage.

Fig. 11. Visual comparisons for SIG. (a) Image; (b) SIG-D; (c) SIG; (d) GT.

Fig. 12. Visual comparisons for the role of PORE in the identification stage.
(a) Image; (b) POCINet-PORE; (c) POCINet-search; (d) GT.

As well, as illustrated in Fig. 12, POCINet-PORE misses
some object parts (top two rows of Fig. 12), introduces some
background noises (third row of Fig. 12), or even cannot
identify the camouflaged object (bottom row of Fig. 12),
compared to POCINet-search, which is due to the over-search.
Therefore, an individual PORE subnetwork is essential in the
identification stage for segmenting out the camouflaged object,
as can be verified by the performance improvement of the
entire model.

6) Robustness Compared With SINet [27]: To explore the
robustness of our model with different initial parameters and
randomnesses of the training, we re-train our model and
SINet [27] for another four times. Together with the final
results of our model and SINet [27] listed in this paper,
we compute the standard deviations of different metrics for
different datasets. Table II lists the standard deviations. It can
be seen that our standard deviations of different metrics
are mostly smaller than that of SINet [27] (except Em for
CAMO [26]). This demonstrates that our model achieves
more consistent performance with different initial randomized
parameters when training than SINet [27] does, showing better
robustness than SINet [27].
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TABLE II

STANDARD DEVIATIONS OF DIFFERENT METRICS FOR OUR METHOD AND SINET [27]. SMALLER STANDARD DEVIATION IS MARKED BY BOLD

TABLE III

Fβ , MAE, Sm , AND Em VALUES OF DIFFERENT METHODS. TOP TWO METHODS ARE MARKED BY RED AND BLUE, RESPECTIVELY

Fig. 13. PR and F-measure curves of different methods on camouflaged object detection datasets.

E. Comparison With the State-of-the-Art Methods

In this subsection, to verify the superiority of our model,
we compare our method with one deep camouflaged object
detector, i.e., SINet [27]. Besides, due to the lack of
deep camouflaged object detection networks, ten deep object
detectors are taken into account for comparisons, including
TSPOANet [30], PoolNet [63], HTC [64], BASNet [29],
PiCANet [11], PFANet [62], FPN [66], MaskRCNN [67],
MSRCNN [68], and PSPNet [28], which are re-trained for
camouflaged object detection.

1) Quantitative Comparison: Table III illustrates the quan-
titative comparisons. For CHAMELEON [61], our method
performs best in terms of Fβ , MAE, and Em , and is slightly
inferior to SINet [27] with respect to Sm . For CPD1K [31]
that only contains camouflaged persons, we achieve the best
performance. Especially, we achieve 16.51 and 14.35 points
higher than the best compared method, i.e., SINet [27], with
respect to Fβ and Em , respectively, which indicates our model
can especially address the camouflaged people detection. For
COD10K [27], we beat the other approaches with respect
to Fβ , MAE, and Em , but are slightly inferior to SINet [27]
in terms of Sm . Obviously, we achieve consistently supe-
rior performance on these three datasets. For CAMO [26],
we are inferior to SINet [27] but superior to the other
methods. Fig. 13 plots the PR curves of different meth-
ods. Specifically, on CHAMELEON [61] and CPD1K [31],
we achieve the best PR performance. On COD10K [27]
and CAMO [26], our method is inferior to SINet [27] but
significantly better than the other methods. However, it is
worth noting that our proposed method uses a primitive

backbone VGG [52] while other competitors, including
SINet [27], take advantage of a ResNet [69] backbone, which
is well-known for its better performance. The reason for using
VGG [52] is to make our network as thin and lightweight as
possible.

Fig. 14 illustrates the detection results of different methods
on images with various distortions, including scaling, slen-
der objects, and various shapes. To be specific, for those
objects with different sizes, the compared methods usually
miss some object parts of the large object, and hardly iden-
tify the small object. While our method can segment out
the large objects with good wholeness and the small object
clearly under the complex scenes. For the slender objects,
our approach can identify them and segment them out with
clear object boundaries, while the others fail to recognize
these objects owing to the high similarity between foreground
and background. For those objects with various shapes, the
compared methods mostly cannot label the whole object
boundaries and thereby fail at segmenting them out, while
our method can well detect the whole object shape with clear
boundaries.

2) Deeper Insight Into CAMO [26]: As the dataset
CAMO [26] contains real-life (CAMO-RE) images (e.g.,
Fig. 14) and synthetic (CAMO-SY) images (e.g., Fig. 15),
we divide the whole dataset into two subsets: CAMO-RE and
CAMO-SY, respectively. We believe, the comparisons on two
subsets, as well as the whole dataset, are fair and will be
more insightful. As shown in Table IV, we achieve the best
performance on CAMO-RE while obtaining the second-best
performance On CAMO-SY, which is unfortunately inferior
to SINet [27].
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Fig. 14. Detection results of different methods.

TABLE IV

Fβ , MAE, Sm , AND Em VALUES OF DIFFERENT METHODS

ON CAMO [26]. TOP TWO METHODS ARE MARKED BY RED
AND BLUE, RESPECTIVELY

a) Why SINet [27] is superior to our method on
CAMO-SY?: The reason why SINet is superior to our model
can be interpreted as follows. SINet relies on the deep network
to extract the robust features of the input image to carry out
the task of camouflaged object detection. While we attempt to
detect the camouflaged object from the part-object relational
perspective, which identifies the whole camouflaged object by
finding the relevant object parts. This manner prefers to work
for real-life scenes because part-object relationships appear
truly on the real-life scenes. In contrast, the part-object rela-
tionships (at the feature layers) in those man-made synthetic
images on CAMO-SY have been strained due to unnatural
pixels. Consequently, our model based on the part-object
relational view is inferior on CAMO-SY, compared to SINet.
However, SINet is inferior to our model on real-life scenes
because SINet has a limited ability for feature extraction
on low-contrast real-life scenes, which can be addressed
easily by our model because that our part-object relation-
ships extraction is not weakened on various camouflaged
scenes.

Fig. 15. Confusing synthetic images.

TABLE V

DISTRIBUTIONS OF REAL-LIFE AND SYNTHETIC IMAGES ON CAMO [26]

As illustrated in Fig. 15, some synthetic scenes confuse the
proposed camouflaged object detector, resulting in a failure
at recognizing the camouflaged object from the surroundings.
This observation reveals that synthetic images might be less
useful for training the network with a CapsNet structure.
Again, we want to emphasize that our entire framework is
built upon a primitive VGG [52] backbone.

To have a better understanding of the reason of why the pro-
posed model performs unsatisfactorily on CAMO-SY, we take
a study on the data distribution of the real-life images against
synthetic images during training and testing. As illustrated
in Table V, when training the proposed camouflaged object
framework, the number of real-life images and synthetic
images are 4507 and 133, respectively, resulting in a ratio of
33.9 : 1. However, when testing for the dataset CAMO [26],
the real-life images and synthetic images become 133 and
117, respectively, resulting in a ratio of 1.1 : 1. Obviously,
the marginal number of synthetic images, whose statistical
distribution is not in accordance with that of real-life images,
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TABLE VI

AVERAGE OF Fβ , MAE, Sm , AND Em VALUES ON FOUR DATASETS,
INCLUDING CHAMELEON [61], CPD1K [31], COD10K [27], AND

CAMO [26], OF DIFFERENT METHODS. THE TOP TWO METHODS

ARE MARKED BY RED AND BLUE, RESPECTIVELY

in the training subset cannot train our PORE subnetwork that is
a CapsNet structure to explore primitive part-object relational
cues, which further wearkens the proposed camouflaged object
detector to perform that promising on synthetic images. This
will be taken into account in our future work.

3) Overall Comparison on CHAMELEON [61],
CPD1K [31], COD10K [27], and CAMO [26]: To
better exhibit the performance of the proposed method,
we compute an overall performance on four datasets,
including CHAMELEON [61], CPD1K [31], COD10K [27],
and CAMO [26]. Specifically, we propose a simple yet
effective indicator to calculate overall values of Fβ , MAE,
Sm , and Em . The indicator can be represented as

φ j =
4∑

i=1

(
αiϕi j

)/ 4∑
i=1

αi , (15)

where i(i = 1, 2, 3, 4) and j ( j = 1, 2, 3, 4) represent different
datasets (CHAMELEON [61], CPD1K [31], COD10K [27],
and CAMO [26]) and different metric values (Fβ , MAE, Sm ,
and Em). ϕi j is the j th metric value for the i th dataset.
αi is the number of images on the i th dataset. φ j is the
j th overall metric value. Using Eq. (15), Table VI lists the
overall performance of different metrics. It can be found in
Table VI,the proposed method achieves the best performance
in terms of Fβ , MAE, and Em , and competitive performance
in terms of Sm that is slightly inferior to SINet [27]. Taking
into account Table VI, III, and IV, our method prefers to
solve the problem of camouflaged object detection on real-life
scenes. Again, it is noticed that such a promising performance
is achieved based on a primitive VGG [52] backbone, showing
that the integration of the contrast information and part-object
relational knowledge indeed helps detect camouflaged objects.

F. Failure Cases

Although the proposed model has achieved good perfor-
mance on various cases, there still exist some challenging
cases to be solved. Fig. 16 illustrates some confusing detection
results of our model on complex scenes. More precisely, those
objects in the top two rows of Fig. 16 cannot be segmented out
wholly, which is because that these large objects have unclear
part-object hierarchies within their identical inner regions.

Fig. 16. Some failure cases.

Besides, those images in the bottom two rows of Fig. 16
introduce noises in their camouflaged maps, which owes
to the confusing backgrounds that conceal the camouflaged
patterns. Also, these scenes are challenging for the contrast
based method (i.e., SINet [27]) and the part-object relational
method (i.e., TSPOANet [30]). In the future, we will dig into
more robust part-object relationships exploration mechanisms
to improve our method for various camouflaged patterns via
taking into account robust deep learning [70].

V. CONCLUSION

In this paper, we have proposed a POCINet covering the
search stage and the identification stage for camouflaged
object detection by engaging the contrast information and
the part-object relational knowledge for decoding. Besides,
a SIG module is designed to biologically connect two stages
for location and segmentation of the camouflaged object in
complex scenes. Extensive experiments have verified the supe-
riority of the proposed camouflaged object detection network.
One possible future work might be the enhancement of our
part-object relationships exploration for various camouflaged
scenes by incorporating robust deep learning mechanisms.
Another possible future work might be the performance
improvement of our model by using more powerful backbone
networks, e.g., ResNet [69] and DenseNet [71].

REFERENCES

[1] K. Lin, S.-C. Chen, C.-S. Chen, D.-T. Lin, and Y.-P. Hung, “Abandoned
object detection via temporal consistency modeling and back-tracing
verification for visual surveillance,” IEEE Trans. Inf. Forensics Security,
vol. 10, no. 7, pp. 1359–1370, Jul. 2015.

[2] G. Chen et al., “Neuroaed: Towards efficient abnormal event detection
in visual surveillance with neuromorphic vision sensor,” IEEE Trans.
Inf. Forensics Security, vol. 16, pp. 923–936, 2020.

[3] S. V. A. Kumar, E. Yaghoubi, A. Das, B. S. Harish, and H. Proenca,
“The P-DESTRE: A fully annotated dataset for pedestrian detection,
tracking, and short/long-term re-identification from aerial devices,” IEEE
Trans. Inf. Forensics Security, vol. 16, pp. 1696–1708, 2021.

[4] T. Wang and H. Snoussi, “Detection of abnormal visual events via global
optical flow orientation histogram,” IEEE Trans. Inf. Forensics Security,
vol. 9, no. 6, pp. 988–998, Jun. 2014.

[5] X. Zhu, X.-Y. Jing, X. You, W. Zuo, S. Shan, and W.-S. Zheng, “Image
to video person re-identification by learning heterogeneous dictionary
pair with feature projection matrix,” IEEE Trans. Inf. Forensics Security,
vol. 13, no. 3, pp. 717–732, Mar. 2018.

[6] N. Y. Almudhahka, M. S. Nixon, and J. S. Hare, “Semantic face sig-
natures: Recognizing and retrieving faces by verbal descriptions,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 3, pp. 706–716, Mar. 2018.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 03,2021 at 02:54:54 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: INTEGRATING PART-OBJECT RELATIONSHIP AND CONTRAST FOR CAMOUFLAGED OBJECT DETECTION 5165

[7] L. Zheng, Y. Lei, G. Qiu, and J. Huang, “Near-duplicate image detection
in a visually salient Riemannian space,” IEEE Trans. Inf. Forensics
Security, vol. 7, no. 5, pp. 1578–1593, Oct. 2012.

[8] P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan, “Amulet: Aggregating
multi-level convolutional features for salient object detection,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 202–211.

[9] Z. Luo, A. Mishra, A. Achkar, J. Eichel, S. Li, and P.-M. Jodoin, “Non-
local deep features for salient object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6609–6617.

[10] N. Liu and J. Han, “DHSNet: Deep hierarchical saliency network for
salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 678–686.

[11] N. Liu, J. Han, and M.-H. Yang, “PiCANet: Learning pixel-wise
contextual attention for saliency detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3089–3098.

[12] G. Li and Y. Yu, “Deep contrast learning for salient object detection,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 478–487.

[13] Y. Liu, J. Han, Q. Zhang, and C. Shan, “Deep salient object detection
with contextual information guidance,” IEEE Trans. Image Process.,
vol. 29, pp. 360–374, 2020.

[14] D. Zhang, J. Han, Y. Zhang, and D. Xu, “Synthesizing supervision
for learning deep saliency network without human annotation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 42, no. 7, pp. 1755–1769,
Jul. 2020.

[15] Y. Liu, J. Han, Q. Zhang, and L. Wang, “Salient object detection via
two-stage graphs,” IEEE Trans. Circuits Syst. Video Technol., vol. 29,
no. 4, pp. 1023–1037, Apr. 2018.

[16] M.-M. Cheng et al., “BING: Binarized normed gradients for objectness
estimation at 300 fps,” Comput. Vis. Media, vol. 5, no. 1, pp. 3–20,
2019.

[17] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 11, pp. 3212–3232, Nov. 2019.

[18] J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, “Advanced deep-
learning techniques for salient and category-specific object detection:
A survey,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 84–100,
Jan. 2018.

[19] D.-P. Fan et al., “PraNet: Parallel reverse attention network for polyp
segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist.
Intervent. Lima, Peru: Springer, 2020, pp. 263–273.

[20] M. Yasin, O. Sinanoglu, and J. Rajendran, “Testing the trustworthiness
of IC testing: An oracle-less attack on IC camouflaging,” IEEE Trans.
Inf. Forensics Security, vol. 12, no. 11, pp. 2668–2682, Nov. 2017.

[21] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin, “On the approxi-
mation resiliency of logic locking and IC camouflaging schemes,” IEEE
Trans. Inf. Forensics Security, vol. 14, no. 2, pp. 347–359, Feb. 2019.

[22] S. Ge, X. Jin, Q. Ye, Z. Luo, and Q. Li, “Image editing by object-aware
optimal boundary searching and mixed-domain composition,” Comput.
Vis. Media, vol. 4, no. 1, pp. 71–82, Mar. 2018.

[23] H.-K. Chu, W.-H. Hsu, N. J. Mitra, D. Cohen-Or, T.-T. Wong, and
T.-Y. Lee, “Camouflage images,” ACM Trans. Graph., vol. 29, no. 4,
pp. 1–51, 2010.

[24] S. K. Singh, C. A. Dhawale, and S. Misra, “Survey of object detection
methods in camouflaged image,” Proc. IERI, vol. 4, pp. 351–357,
Jan. 2013.

[25] Y. Zheng, X. Zhang, F. Wang, T. Cao, M. Sun, and X. Wang, “Detection
of people with camouflage pattern via dense deconvolution network,”
IEEE Signal Process. Lett., vol. 26, no. 1, pp. 29–33, Jan. 2019.

[26] T.-N. Le, T. V. Nguyen, Z. Nie, M.-T. Tran, and A. Sugimoto,
“Anabranch network for camouflaged object segmentation,” Comput. Vis.
Image Understand., vol. 184, pp. 45–56, Jul. 2019.

[27] D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng, J. Shen, and L. Shao,
“Camouflaged object detection,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 2777–2787.

[28] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2881–2890.

[29] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and
M. Jagersand, “BASNet: Boundary-aware salient object detection,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 7479–7489.

[30] Y. Liu, Q. Zhang, D. Zhang, and J. Han, “Employing deep part-object
relationships for salient object detection,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 1232–1241.

[31] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of
salient object segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 280–287.

[32] G. H. Thayer and A. H. Thayer, Concealing-Coloration in the Animal
Kingdom: An Exposition of the Laws of Disguise Through Color and
Pattern Being a Summary of Abbott H. Thayer’s Discoveries. New York,
NY, USA: Macmillan Co, 1909.

[33] E. B. Poulton, “Adaptive coloration in animals,” Nature, vol. 146,
no. 3692, pp. 144–145, Aug. 1940.

[34] Y. Pan, Y. Chen, Q. Fu, P. Zhang, and X. Xu, “Study on the camouflaged
target detection method based on 3D convexity,” Mod. Appl. Sci., vol. 5,
no. 4, p. 152, Aug. 2011.

[35] Z. Liu, K. Huang, and T. Tan, “Foreground object detection using
top-down information based on EM framework,” IEEE Trans. Image
Process., vol. 21, no. 9, pp. 4204–4217, Sep. 2012.

[36] M. Stevens and S. Merilaita, “Animal camouflage: Current issues and
new perspectives,” Philos. Trans. Royal Soc. B, Biol. Sci., vol. 364,
no. 1516, pp. 423–427, 2009.

[37] I. Biederman, “Recognition-by-components: A theory of human image
understanding,” Psychol. Rev., vol. 94, no. 2, p. 115, 1987.

[38] J. Krivic and F. Solina, “Part-level object recognition using
superquadrics,” Comput. Vis. Image Understand., vol. 95, no. 1,
pp. 105–126, Jul. 2004.

[39] A. Jaklic, “Construction of cad models from range images,” Ph.D. dis-
sertation, Dept. Comput. Inf. Sci., Univ. Ljubljana, Kongresni Trg,
Ljubljana, Slovenia, 1997.

[40] A. P. Pentland, “Automatic extraction of deformable part models,” Int.
J. Comput. Vis., vol. 4, no. 2, pp. 107–126, Mar. 1990.

[41] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object
detection with deformable part models,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 2241–2248.

[42] R. Girshick, F. Iandola, T. Darrell, and J. Malik, “Deformable part
models are convolutional neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 437–446.

[43] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in Proc. Int. Conf. Artif. Neural Netw., 2011, pp. 44–51.

[44] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 3859–3869.

[45] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with em
routing,” in Proc. Int. Conf. Learn. Represent., 2018, pp. 3856–3866.

[46] B. Cheng et al., “SPGNet: Semantic prediction guidance for scene
parsing,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 5218–5228.

[47] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in Proc. Eur. Conf. Comput. Vis. Amsterdam,
The Netherlands: Springer, 2016, pp. 483–499.

[48] Q. Yu, L. Xie, Y. Wang, Y. Zhou, E. K. Fishman, and A. L. Yuille,
“Recurrent saliency transformation network: Incorporating multi-stage
visual cues for small organ segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8280–8289.

[49] W. Shen, B. Wang, Y. Jiang, Y. Wang, and A. Yuille, “Multi-stage Multi-
recursive-input fully convolutional networks for neuronal boundary
detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2391–2400.

[50] T. Wang, A. Borji, L. Zhang, P. Zhang, and H. Lu, “A stagewise
refinement model for detecting salient objects in images,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 4019–4028.

[51] Z. Deng et al., “R3Net: Recurrent residual refinement network for
saliency detection,” in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 684–690.

[52] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–14.

[53] S. Sabour, N. Frosst, and G. Hinton, “Matrix capsules with em routing,”
in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–15.

[54] L. Zhang, J. Dai, H. Lu, Y. He, and G. Wang, “A bi-directional message
passing model for salient object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1741–1750.

[55] P. Skurowski, H. Abdulameer, J. Błaszczyk, T. Depta, A. Kornacki,
and P. Kozieł, “Animal camouflage analysis: Chameleon database,”
Unpublished Manuscript, vol. 2, no. 6, p. 7, 2018.

[56] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned
salient region detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2009, pp. 1597–1604.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 03,2021 at 02:54:54 UTC from IEEE Xplore.  Restrictions apply. 



5166 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[57] D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, and A. Borji, “Structure-measure:
A new way to evaluate foreground maps,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 4548–4557.

[58] D.-P. Fan, C. Gong, Y. Cao, B. Ren, M.-M. Cheng, and A. Borji,
“Enhanced-alignment measure for binary foreground map evaluation,”
2018, arXiv:1805.10421.

[59] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. OSDI, vol. 16, 2016, pp. 265–283.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[61] Q. Yan, L. Xu, J. Shi, and J. Jia, “Hierarchical saliency detection,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 1155–1162.

[62] T. Zhao and X. Wu, “Pyramid feature attention network for saliency
detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 3085–3094.

[63] J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang, “A simple
pooling-based design for real-time salient object detection,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 3917–3926.

[64] K. Chen et al., “Hybrid task cascade for instance segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4974–4983.

[65] J. Zhao, J.-J. Liu, D.-P. Fan, Y. Cao, J. Yang, and M.-M. Cheng, “EGNet:
Edge guidance network for salient object detection,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 8779–8788.

[66] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.

[67] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961–2969.

[68] Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, “Mask scoring
R-CNN,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 6409–6418.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[70] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” in Proc. 35th Int. Conf. Mach.
Learn., 2018, pp. 4334–4343.

[71] G. Huang, Z. Liu, L. Van D. Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

Yi Liu received the B.S. degree from the Nanjing
Institute of Technology, China, in 2012, the M.S.
degree from Dalian University, China, in 2015, and
the Ph.D. degree from Xidian University, China,
in 2019. From 2018 to 2019, he was a Visiting
Scholar at Lancaster University. He is currently
a Lecturer at Changzhou University. His research
interests include computer vision and deep learning.

Dingwen Zhang (Member, IEEE) received the
Ph.D. degree from Northwestern Polytechnical Uni-
versity, Xi’an, China, in 2018. From 2015 to 2017,
he was a Visiting Scholar at The Robotics Institute,
Carnegie Mellon University. He is currently a Pro-
fessor with the School of Automation, Northwest-
ern Polytechnical University. His research interests
include computer vision and multimedia processing,
especially on saliency detection, video object seg-
mentation, temporal action localization, and weakly
supervised learning.

Qiang Zhang received the B.S. degree in automatic
control, the M.S. degree in pattern recognition and
intelligent systems, and the Ph.D. degree in circuit
and system from Xidian University, China, in 2001,
2004, and 2008, respectively. He was a Visiting
Scholar with the Center for Intelligent Machines,
McGill University, Canada. He is currently a Pro-
fessor with the Department of Automatic Control,
Xidian University. His current research interests
include image processing and pattern recognition.

Jungong Han is currently a Chair Professor and
the Director of the Research of Computer Science,
Aberystwyth University, U.K. He also holds an Hon-
orary Professorship with the University of Warwick,
U.K. His research interests include computer vision,
artificial intelligence, and machine learning.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 03,2021 at 02:54:54 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


