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Contextual information has played an important role in salient object detection. However, due to the
fixed geometric structures of convolution kernels employed by existing Convolutional Neural
Networks (CNNs) based methods, it is difficult to extract meaningfully visual contexts for those salient
objects with varying sizes and non-rigid shapes. To address this problem, in this paper, we propose a
Multi-Scale Deformation Module (MSDM) to capture multi-scale visual cues and varying shapes of salient

objects. Moreover, most existing CNNs based methods treat all channels of feature maps equally, which
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tends to differ from the fact that different channels actually contribute differently to saliency prediction.
For that, we involve a novel Channel-Wise Attention Mechanism (CWAM) after MSDM to highlight those
informative channels while suppressing those confusing ones. Experimental results on five benchmark
datasets demonstrate the superiority of the proposed method over the state-of-the-art approaches.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Salient object detection aims to identify the most visually dis-
tinctive objects or regions in a given image. It has been used as a
preprocessing step to reduce the complexity by a large margin in
a wide range of applications, including person identification [1],
visual tracking [2,3], robot navigation [4], visual question answer-
ing [5], image segmentation [6,7], image fusion [8,9], image retrie-
val [10], video segmentation [11], image quality assessment [12],
etc.

Traditional methods [13-17] infer the salient object via infer-
ring hand-crafted features, e.g., color, texture, etc. These low-
level cues are trivial so that the methods relying on them unavoid-
ably encounter the bottleneck for performance improvements. In
recent years, CNNs have successfully broken the limits of tradi-
tional methods and achieved impressive results due to their pow-
erful representative ability [18-22]. For instance, to better
understand the image, Luo et al. [20] learned non-local deep fea-
tures, Zhang et al. [21] learned deep uncertain convolutional fea-
tures, and Zhang et al. [19] combined different levels of deep
features to integrate low-level spatial details and high-level
semantic knowledge. These learned deep features substantially
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improve the saliency detection performance. However, there still
exist some problems for CNNs based methods to be resolved.

First, most existing CNNs based salient object detection models
[19-21] learn deep features based on the grid convolution kernels
such that they generally lack the capability of modeling geometric
transformations due to the fixed geometric structures of convolu-
tion kernels. Failure to do so makes those models unable to capture
the desired visual context for non-rigid salient objects with diverse
shapes accurately. For example, as shown in the top two rows of
Fig. 1, previous CNNs based methods failed to detect the complete
objects due to their irregular shapes.

Secondly, all the channels of feature maps are not equally
important for the saliency prediction. To give a clear illustration
for this problem, we display 4 channels of feature maps' in Fig. 2,
on which it can be seen that different channels have different impor-
tance for saliency prediction. To be specific, the feature map of Fig. 2
(c) cannot distinguish the foreground and background regions, thus
failing to identify the salient object from the background. The feature
maps of Fig. 2(d) and (e) possess high responses on background
regions and foreground regions, respectively, helping to predict the
background and foreground regions in the saliency map. The feature
map of Fig. 2(f) almost locates the whole salient object with a com-
plete object shape, which greatly helps to predict the salient object.

1 These 4 feature maps are learned by the model with only MSDM.
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Fig. 1. Visual examples of existing CNNs based methods: (a) Images; (b) Ground truth; (c) NLDF [20]; (d) UCF [21]; (e) Amulet [19]; (f) OURS.

(b) (©)

(d)

(e)

Fig. 2. Visualization for feature maps of our model without considering the attention module. (a) Images; (b) Ground truth; (c)-(f): four channels of feature maps. Different
channels have different importance for saliency prediction. For example, (c) cannot identify the salient object from backgrounds, while (f) greatly helps to predict the salient

object.

In view of the different importance of different channels, treating all
channels equally may degrade the saliency prediction performance.

In this paper, we propose a deep end-to-end salient object
detection network with the aim to solve the above two problems.
Concretely, to solve the former problem, we design a Multi-Scale
Deformation Module (MSDM) to capture more primitive visual
context information of those non-rigid salient objects. For each
stage, we obtain multiple feature maps by embedding the deform-
able convolution [23] in a multi-scale structure, leading to deform-
able receptive fields across different scales. The obtained feature
maps are concatenated together to capture diverse shapes of the
non-rigid salient object at multiple scales. For the latter problem,
we introduce a Channel-Wise Attention Mechanism (CWAM) to
boost those more informative channels whereas suppressing those
less important ones. For each channel, we calculate a saliency pre-
diction score based on its feature map. These prediction scores are
in turn utilized as the channel-wise attention scores to measure
the importance of different channels. As such, multiplying those
feature maps of MSDM with their channel-wise attention scores
enables to highlight those remarkable feature maps for subsequent
saliency prediction. In summary, the cooperative combination of
MSDM and CWAM makes the network be truly capable of seg-
menting out those non-rigid salient objects accurately and com-
pletely, as can be obviously observed from Fig. 1(f).

To sum up, the contributions of our work are as follows:

(1) A Multi-Scale Deformation Module (MSDM) is proposed to
capture various receptive fields, leading to more primitive
visual context covering different scales and different shapes
of the non-rigid salient objects.
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(2) A Channel-Wise Attention Mechanism (CWAM) is designed
to compute an importance factor for each channel of feature
map, and further to promote those informative channels
whereas suppressing those unimportant ones.

(3) Numerous experiments on five benchmark datasets demon-
strate the superiority of our proposed salient object detec-
tion model over the state-of-the-art methods.

The rest of the paper is organized as follows: Section 2 provides
an overview of related works. Section 3 describes the details of our
salient object detection model. Section 4 discusses the perfor-
mance of our model compared to other state-of-the-art methods.
Section 5 concludes this paper.

2. Related work

The overview of traditional salient object detection methods
based on hand-crafted features can be referred to [24]. In this sec-
tion, we focus on the most related works, including CNNs based
salient object detection methods and the attention mechanism.

2.1. CNNs based salient object detection

Early CNNs-based methods usually over-segment the input
image into small regions. These regions are then fed into a deep
network with fully connected layers to extract high-level features.
Li et al. [18] extracted multi-scale deep features for every image
region from three nested and increasingly larger rectangular win-
dows. Wang et al. [25] integrated both local features and global
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cues to generate a weighted sum of salient regions. Lee et al. [26]
exploited two subnetworks to encode low-level and high-level fea-
tures separately. Wang et al. [27] proposed two complementary
branches to capture effective semantic features and visual contrast
information for saliency inference.

However, high-level features with low resolutions extracted
from CNNs usually loose the spatial information because of the
existence of the fully connected layers. Recently, several Fully Con-
volutional Network (FCN)-based methods have been proposed to
overcome this problem by integrating multi-level information.
Luo et al. [20] combined multi-level information through a
multi-resolution 4 x 5 grid structure. Zhang et al. [19] integrated
multi-level convolutional features to multiple resolutions and
combined the deeper-level prediction and the shallower-level fea-
ture maps via a weighted addition.

Recently, some CNNs based methods attempt to capture rich
contextual features to effectively detect the salient objects that
have large variations in scale, shape and position. Wang et al.
[28] proposed a pyramid pooling module to extract multi-scale
features for saliency detection. Chen et al. [29] proposed an
inception-segmentation module, in which input features were
simultaneously filtered with different-size kernels. Wang et al.
[30] used three context filters with different-size kernels to obtain
multi-scale contextual information in the contextual weighting
module. Different from their works, we introduce the deformable
convolution into multi-scale convolution streams to build our pro-
posed MSDM to effectively capture those non-rigid salient objects.
With the aid of learned kernel offsets, the deformable convolution
is able to achieve adaptive receptive fields, which can further grab
irregular shapes of non-rigid objects. More analyses can be found
in [31], which provides a survey on deep learning based salient
object detection.

2.2. Attention mechanism

There exist two types of attention mechanisms including spa-
tial attention and channel attention. Spatial attention is modeled
to mimic the human ability of focusing on informative regions in
visual scenes [32-34]. Channel attention is adopted to selectively
promote those informative channels [35-37]. The attention mech-
anism has shown its efficiency in various vision tasks. Yu et al.
[38] designed a channel attention block to guide the selection
of low-level features with the help of high-level features for the
task of sematic segmentation. In the task of image captioning,
Chen et al. [35] jointly exploited the spatial-wise attention model
and the channel-wise attention model to encode the attentive
spatial locations and the attentive channels, respectively. Woo
et al. [36] extracted those informative features by designing the
attention models along the spatial and channel dimensions. In
order to enhance the representation power of the network, Hu
et al. [37] adopted an attention model by exploring the channel
relationships.

Recently, the attention mechanism has been adopted for salient
object detection. Kuen et al. [34] used a recurrent attention model
to select local regions to refine their saliency maps. Li et al. [39]
learned pixel-level attentional weights along with saliency maps
based on different-scale versions of the same image. Zhang et al.
[40] exploited a gate function to make the message adaptively pass
among multi-level features. Liu et al. [41] designed a pixel-wise
attention network to selectively attend to informative context
locations. Zhang et al. [22] proposed a spatial attention mechanism
to highlight the salient regions while suppressing the background
ones, and a channel-wise attention mechanism to assign larger
weights to those channels with higher responses to salient objects.
Wang et al. [42] exploited a pyramid attention model for discrim-
inative saliency representations with multi-scale feature learning
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and extended receptive fields. In [43], a channel-wise attention
module and a spatial attention module were designed for high-
level features and low-level features to capture informative con-
text information for saliency prediction, respectively. Wang et al.
[44] predicted the salient object from the fixation map. Differently,
we design a novel channel-wise attention mechanism (i.e., CWAM)
based on the global context prediction of each channel to promote
those informative channels but suppress those unimportant
ones.

3. Proposed method

Fig. 3 illustrates the overall architecture of the proposed salient
object detection network. The framework consists of the backbone
network, MSDM, CWAM, and saliency inference, which are corre-
sponding to each row from top to bottom in Fig. 3, respectively.
The details of each part will be elaborated in the following.

3.1. Backbone network

In our proposed framework, ResNet-50 network [45] is adopted
as the backbone network. We modify ResNet-50 by removing the
last pooling layer and the fully connected layers for the task of sali-
ent object detection. As shown in Fig. 3, the input image is fed into
the modified ResNet-50 to obtain five levels of feature maps, which
are represented as {fq,f,,f3,f4,f5}.

3.2. MSDM for multi-scale deformable visual cues

To obtain more primitive visual context, we design a MSDM at
each level following the backbone network to learn multi-scale
deformable visual cues. Basically, our MSDM consists of two steps:
multi-scale context extraction and deformable context extraction.
Regarding the former, three convolution streams with different-
size kernels are designed to produce three-scale receptive fields,
which are committed to capturing different-scale visual cues and
thus detecting different-size salient objects. With respect to the
latter, a deformable convolution designed for non-rigid object
bounding boxes locations in [23] is embedded in the above
multi-scale structure by adding a 2D offset to the regular grid sam-
pling locations in the standard convolution, resulting in adaptive-
shape geometric structures of the convolution kernels. Those irreg-
ular shapes of those non-rigid salient objects can be further
explored. Combining these two steps, MSDM is able to robustly
learn various receptive fields to capture more primitive visual con-
text, covering different scales and diverse shapes of those non-rigid
salient objects. The details of these two steps will be illustrated in
the following.

3.2.1. Step 1: Multi-scale context extraction

Salient objects in different scenes usually have different scales.
To extract different-scale context, we learn multi-scale features at
each level except the deepest level®. Specifically, three streams of
different scales are constructed by three convolutional layers with
different-scale kernels, i.e., 1 x 1,3 x 3, and 5 x 5. Considering that
convolutions with larger spatial filters tend to cause expensively
computational complexity, we replace the convolutional layer of
the kernel of 5 x 5 with two convolutional layers of the kernel of
3 x 3. Moreover, in order to reduce the number of channels, a convo-
lutional layer with the kernel of 1 x 1 is added before the two con-
volutional streams with large filter kernels. The details are clearly

2 Since the deepest-level feature maps are with a very small resolution but a large
receptive field, which can capture high-level semantic knowledge. Therefore, we use a
convolutional layer to obtain the global context (11 x 11 x 1024) instead of applying
MSDM at this level.
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Fig. 3. Architecture of the proposed salient object detection network.
illustrated by the blue boxes in Fig. 4. In such way, these three i__I__t_
. . npu
streams possess different-scale receptive fields, and thus are able | 7 ngc I
to capture different-scale visual context of salient objects. r —T—:—l 3
Conv Conv Conv
. Ix1x N, Ix1x N, Ix1x N,
3.2.2. Step 2: Deformable context extraction _ _ . W H x N, W x Hx N, I Wx HxN, |
In real scenes, there exist many non-rigid salient objects with Offsar St
. .. . . S€
various shapes. These non-rigid visual cues are challenging for (3x3x18)x4 (3x3x18)x 4
the standard convolution with a fixed-shape kernel, which is inher- (W x H x18)x 4 (W x H x18) x4
ently limited to model irregular geometric structures. To solve this v
issue, we capture the deformable visual context via the deformable Deform Deform
convolution [23], which learns a 2D offset® for each kernel element 3x3xN, 3x3x Ny
. . . W x H x N W x H x Ny
based on the preceding feature maps. As such, adaptive receptive
fields can be learned to capture diverse object shapes, leading to Offset
. . . . (3x3x18)x4
deformable context extraction of the non-rigid salient object. (W x H x18)x 4
As shown by the magenta boxes in Fig. 4, deformable context
extraction is performed in the two streams with large filter kernels. D"f
It is displayed in Fig. 4 that based on the preceding feature maps, 4 AN
groups of 2D offsets are learned via a series of convolutional layers, W x H x N,

resulting in the same spatial resolution with the preceding feature
map. The preceding feature maps and the learned 2D offset are
then fed into the deformable convolution network. In such way,
we can achieve diverse-shape receptive fields, which are able to
robustly concentrate on different-shape visual cues of the non-
rigid salient objects.

Fig. 5 visualizes the deformable receptive fields on a real image.
As shown in Fig. 5, due to the involvement of the deformable con-
volution, the network can learn a primitive receptive field with
respect to the background region and objects, further helping the
model to locate background regions and objects. More specifically,
receptive fields can cover different objects discriminatively.

Difference to MCFEM in BMP [40]. The major difference
between our MSDM and MCFEM in [40] lies in that: The dilated
convolution kernels with different dilated rates employed by
MCFEM [40] indeed can capture different-scale context informa-
tion, while they are with regular shapes, which are still trivial for
diverse-shape visual context of those salient objects with irregular
shapes. Differently, our MSDM adopts the deformable kernel that is
able to adaptively learn a 2D offset to achieve a kernel with an
adaptive shape, which can effectively capture non-rigid context
information. Actually, the dilated kernel is a special case of the
deformable kernel. At the stage of the above discussions, our

3 Ahorizontal displacement and a vertical displacement are learned for each kernel
element, resulting in a 2D offset.
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Fig. 4. Architecture of MSDM. The dotted-line boxes and solid-line ones represent
data blocks and functional ones, respectively. In the data blocks, the top and bottom
rows represent the name and output of the data block, respectively. In the
functional block, the top, middle, and bottom rows represent the name, kernel, and
output of the functional block, respectively. It is noted that 4 groups of 2D offsets
are learned for each kernel. The kernel of 3 x 3 contains 9 elements, each of which
has 2 offsets including horizontal and vertical offsets. Therefore, 18 offsets are
computed for the kernel.

MSDM is more general and robust than MCFEM in BMP [40] to
extract multi-scale deformable visual context.

Comparison to GoogLeNet [46]. The similarity between our
MSDM and GoogLeNet [46] lies in the inception structure, which
utilizes multiple branches with different-size kernels and thereby
different receptive fields. In contrast, the differences between our
MSDM and GoogLeNet [46] mainly lie in two folds. First, our MSDM
embeds the deformable convolution in two branches to achieve
rich context with adaptive receptive fields. Secondly, we remove
the pooling operation in GoogleNet [46] to preserve clear feature
representations (such as object boundaries) for the pixel-level
segmentation.
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(b)
Fig. 5. Visualizations of the deformable receptive field. (a) Image; (b)-(f): Sampling locations (9 red points in each image) in three levels of 3 x 3 deformable filters for one
activation unit (green point) on (b): background and (c)-(f): different objects, respectively.

3.3. CWAM for channel boosting and suppression

Most methods deal with different channels of feature maps
without distinction. Actually, different channels capture different
semantics and thus contribute unequally to the saliency predic-
tion. In order to selectively emphasize those informative channels
but suppress less useful ones, we design a novel channel-wise
attention mechanism, i.e., CWAM, based on the global context of
each channel. This is achieved by calculating a saliency score for
each channel based on its feature maps. The prediction scores are
utilized as the channel-wise attention scores to weigh the impor-
tance of different channels, which is achieved by a series of convo-
lutions and a depth-wise convolution [47].

As shown in Fig. 6, the preceding feature maps of MSDM,

denoted as ", are first downsampled to the resolution
11 x 11 via a series of convolutional layers. Then, we achieve a glo-
bal context score (a real number) for each channel via the depth-
wise convolutional layer [47] that performs a spatial convolution
independently over each channel of feature map. In such way,
we will compute a score number for each channel. These scores
across all the channels are normalized by the sigmoid function,
resulting in the attention scores {a;} (as shown by the circles of dif-
ferent colors in Fig. 6) to measure the importance for different
channels of the preceding feature maps. Finally, the preceding fea-
ture maps of MSDM are multiplied by these obtained channel-wise

attention scores to achieve the attended feature maps f-**™, which
enables to highlight those informative channels of MSDM whereas
weakening those less useful ones. The details of CWAM are illus-
trated in Table 1.

Difference to existing state-of-the-art attention mecha-
nisms. The main differences lie in two folds: i) Most of existing
attention mechanisms (e.g., SEN [37] and PAGRN [22]) apply a Glo-
bal Average Pooling (GAP) [48] for each channel to compute its
attention score, which is computed as the mean of all pixel values
on each channel of feature map. In this context, all pixels on each
channel of feature map are treated equally, which may degrade
some informative pixels. As a departure from GAP [48], CWAM
learns a weight for each pixel within each channel and then com-
putes a saliency prediction score as the channel-wise score based
on the global context of each channel. As a result, CWAM is more
robust to boost those informative channels and suppress those less
important ones. ii) Existing attention mechanisms usually adopt
the fully connected layers after GAP [48] to achieve channel-wise
importance factors, unavoidably leading to high complexity.
Instead, our CWAM directly achieves channel-wise scores via the
depth-wise convolution, which is a more gentle calculation.

3.4. Saliency inference

3.4.1. Saliency map generation

The feature maps of different levels contain different saliency
cues. Deep-level feature maps are good at capturing high-level
semantic knowledge, whereas shallow-level feature maps special-
ize in preserving low-level spatial details. Therefore, we integrate
multi-level feature maps to predict the final saliency map. Consid-
ering the inconsistent resolutions of multi-level feature maps, we
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MSDM
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Global context
score prediction
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CWAM
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Normalization
Sigmoid

[
>
—>» 0 0000 a,

Channel-wise attention score

Fig. 6. Architecture of CWAM.

fuse them and generate the saliency map in a coarse-to-fine man-
ner. The fusion process is summarized as follows:

E { Conv(Cat(dec(Fi,), £, dim;), i =1,2,3,4
=

fglabal7 i— 5’

where Conv(-,dim;) performs a convolution operation on the input
and outputs dim; channels of feature maps. As illustrated in Fig. 3,
dim; = 64, dim, = 128, dim; = 256, dimy =512. Cat(-) is the
cross-channel concatenation. dec(-) is the deconvolution layer with
the kernel of 3 x 3. The output details of F; can be viewed in the bot-
tom row of Fig. 3. After a step-wise integration in Eq. (1), the inte-
grated feature maps will simultaneously incorporate coarse
semantics and fine details.

Finally, the saliency map of the input image can be computed
from F; by a series of operations, i.e., Conv (3, 3) -> BN -> ReLU ->
Deconv -> BN -> RelU -> Conv (3, 3) -> Sigmoid, where (3, 3)
represents the kernel size.

(1)

3.4.2. Loss function

The joint loss function, which is obtained by the cross entropy
loss function [40] and the IoU boundary loss function, is adopted
to train the proposed salient object detection network, i.e.,

Lioint = Lee + Liou,

)

Here, the cross-entropy loss function is defined as

3)

Leg=—%

2 2 Wtvi) =0)llog(y(vi) = ),

i=1 ce{0,1}

where v; represents the location of pixel i. y(v;) and y(v;) represent
saliency values of the pixel i in the ground truth and the predicted
saliency map, respectively. N represents the number of pixels in the
input image.

The IoU boundary loss function is defined as

2[C, NGy

LloU =1- )
|Cql + 1Cql

(4)

where C, and C, are the gradient magnitudes of saliency map and
ground truth corresponding to region q. The gradient magnitude
is computed by using a Sobel operator followed by a tanh activation
on the saliency map. |-| represents the number of non-zero entries
in a mask.
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Table 1
Details of CWAM.
Block Input Layer Kernel Stride Zero padding Output
CWAM-1 MSDM-1 conv 4x4 4 Yes 44 x 44 x 208
(176 x 176 x 208) conv 4 x4 4 Yes 11 x 11 x 208
depth-wise conv 11 x 11 1 Yes 1x1x208
CWAM-2 MSDM-2 conv 4x4 4 Yes 22 x 22 x 208
(88 x 88 x 208) conv 2x2 2 Yes 11 x 11 x 208
depth-wise conv 11 x 11 1 Yes 1x1x208
CWAM-3 MSDM-3 conv 2x2 2 Yes 22 x 22 x 208
(44 x 44 x 208) conv 2x2 2 Yes 11 x 11 x 208
depth-wise conv 11 x 11 1 Yes 1x1x208
CWAM-4 MSDM-4 conv 2x2 2 Yes 11 x 11 x 208
(22 x 22 x 208) depth-wise conv 11 x 11 1 Yes 1x1x208

4. Experiments
4.1. Experimental setup

4.1.1. Datasets

We apply five public benchmark datasets, including ECSSD [49],
HKU-IS [25], DUT-OMRON [16], PASCAL-S [50], and DUTS [51], to
evaluate the performance of our network and other state-of-the-
art methods.

ECSSD [49] contains 1000 complex images with objects of vary-
ing sizes. Some images even have multiple objects.

HKU-IS [25] consists of 4447 challenging images, including
3000 training images and 1447 test images. Most of those images
in this dataset contain multiple salient objects with low contrast.
We evaluate different methods on the test dataset.

DUT-OMRON [16] contains 5168 complex images. Each image
in this dataset contains one or more salient objects, some of which
are too large or too small. Besides, most images of this dataset are
provided with cluttered backgrounds. This dataset is the most
challenging for salient object detection at the moment.

PASCAL-S [50] stems from the PASCAL VOC dataset [52] and
contains 850 images with various scenes.

DUTS [51] includes 10553 images for training and 5019 images
for testing. Those images in this dataset have different scenes and

-
33
B
8
[}
<]
5 |
—

=
:
=
1~

LIc

A
|| A

hEOH

—

(3

o~

Irregular shape Multiple objects

L ow contrast

A

GT

]
2

PFA

ASNet

various sizes. We evaluate the proposed salient object detection
network on the test dataset.

4.1.2. Evaluation criteria

We adopt four evaluation criteria, including Precision-Recall
(PR) curve [53], F-measure curve [53], mean F-measure (Feqn)
[53], adaptive F-measure (Fu4p) [53], and Mean Absolute Error
(MAE) [54]. For a given continuous saliency map S, we convert it
to a binary mask B by using a threshold. Then, its precision and
recall values are computed as precision = [BNS|/|BnS||B||B| and
recall = |BN S|/|BNS||S||S|, respectively, where |-| accumulates the
non-zero entries in a mask. F-measure is formulated as a weighted
combination of Precision and Recall, i.e.,

(1 + p*)Precision x Recall
B? x Precision + Recall

Fp= (3)

As suggested in [53], > = 0.3.

PR curve is plotted by a series of pairs of precision and recall
values under different thresholds.

F-measure curve of a dataset is plotted by a series of F-measure
values, which are computed based on a series of pairs of precision
and recall values under different thresholds.

Fmean for a dataset is computed by

L
bc]

{

=
»

ICTDBU

LFR

Fig. 7. Detection results of different methods.

97



Y. Liu, M. Duanmu, Z. Huo et al.

numl

1
Fmean:m;

where (F;)} represents the F; value for the i — th image under the
j — th threshold in a dataset. num1 is the number of images within
the dataset. num2 = 256 is the number of thresholds, which range
from 0 to 1 with a uniform distribution.

Faqp for a dataset is formulated as

num2

1 .
— S (R, (6)
=

num?2

Fﬂdﬂ = W ; (Fﬁ);meaw (7)

Here, (Fy), ... is the F; value for the i — th image under a speci-
fic threshold, which is set to twice the mean saliency value of the
saliency map.

MAE reflects the average pixel-wise absolute difference
between the saliency map and the ground truth. It is defined as

w h
MAE — ﬁZES(x, ¥) - Bx.y)l. (8)

x=1y=1
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Here, w and h are the height and width of the image,
respectively.

4.1.3. Implementation details

The proposed deep salient object detection network is trained
on Pytorch with the Stochastic Gradient Descent (SGD) optimizer
[55]. We set the initial learning rate to 10>. The momentum
parameter, weight decay, batch size are set to 0.9, 0.0005, and 4,
respectively. Our backbone network is initialized by the pre-
trained ResNet-50 weights [45] and other convolutional parame-
ters are randomly initialized. The DUTS training dataset [51],
which is augmented by mirror reflection and rotation techniques
to improve the varieties, is chosen to train the proposed network.
The input images are resized to 352 x 352 for training and testing.
Training the model to convergence needs about 50 h.

4.2. Comparison with the state-of-the-art methods

Our network is compared with 10 state-of-the-art deep learning
based salient object detection methods, including ASNet [44], PFA

DUT-OMRON
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Fig. 8. PR and F-measure curves of different methods.
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Table 2
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Fmean (larger is better) and MAE (smaller is better) values of different methods. The best three results are displayed

in red,
results of the dataset.

, and blue, respectively. “-” means that the corresponding authors do not provide the detection

ECSSD [49] | HKU-IS [25] | DUT-OMRON [16] | PASCAL-S [50] | DUTS [51]
Foean | MAE | Frean | MAE MAE Foean | MAE | Foqn | MAE
Ours 0.9142 | 0.0373 | 0.8997 | 0.0316 | 0.7262 0.8217 | 0.0652 | 0.8259 | 0.0395
PFA [43] | 0.8900 | 0.0448 0.8009 0.0415

ASNet [44] 0.8903 | 0.0468 | 0.8732 | 0.0414

- 0.8174 | 0.0699 | 0.7609 | 0.0607

ICTDBU [56] 0.8852 | 0.0373 0.0605 0.8137 | 0.0711 0.8042 | 0.0482
LFR [57] 0.8794 | 0.0525 | 0.8786 | 0.0396 | 0.6776 0.1030 0.7641 | 0.1066 | 0.7211 | 0.0834
RFCN [58] 0.7894 | 0.1070 | 0.7897 | 0.0882 | 0.6189 0.1105 0.7247 | 0.1320 | 0.6934 | 0.0900
ELD [59] 0.8218 | 0.0783 | 0.7826 | 0.0719 | 0.6342 0.0909 0.7149 | 0.1206 | 0.6509 | 0.0924
UCF [21] 0.8453 | 0.0690 | 0.8396 | 0.0612 | 0.6318 0.1204 0.7410 | 0.1155 | 0.6630 | 0.1122
NLDF [20] 0.8742 | 0.0626 | 0.8713 | 0.0480 | 0.6825 0.0796 0.7811 0.0977 | 0.7568 | 0.0651

DCL [27] 0.8552 | 0.0679 | 0.8607 | 0.0481

0.6762 0.0797 0.7107

0.1257 | 0.6755 | 0.0879

MDF [60] 0.7586 | 0.1050 | 0.6882 | 0.1292

0.6177 0.0916 0.6516 | 0.1420 | 0.6437 | 0.0935

Fig. 9. Visual illustrations for MSDM.

[43], ICTDBU [56], LFR [57], RECN [58], UCF [21], NLDF [20], DCL
[27], ELD [59], and MDF [60]. For fair comparisons, we utilize the
saliency detection results provided by their corresponding authors.

4.2.1. Visual comparison

Fig. 7 shows some detection results of different methods on var-
ious challenging scenarios, including large object, multiple objects,
irregular shape, and low contrast. To be specific, for those large
objects, the compared methods hardly detect the complete salient
objects. In contrast, our method can detect the whole salient
objects with uniform saliency values. For those multiple objects,
the compared methods miss some salient object parts, while our
approach can locate all the salient objects and predict complete
object shapes. For those objects with irregular shapes, most of

Table 3

the compared methods cannot detect the salient objects com-
pletely and accurately. By contrast, our model can handle these
cases very well, which owes to the primitive visual context cap-
tured by the proposed MSDM. For those scenes with low contrast
between foreground and background, the state-of-the-art methods
easily introduce some confusing noise into the detection results,
while our model can effectively suppress the distractions. This
benefits from the proposed CWAM that promotes those informa-
tive channels of feature maps whereas suppressing those confusing
ones.

4.2.2. Quantitative comparison

Fig. 8 displays PR and F-measure curves of different methods. It
can be found from Fig. 8 that our model is competitive with the
compared methods in terms of PR curves and achieves higher F-
measure values across a wider range over the other listed methods
with respect to F-measure curves on ECSSD [49], HKU-IS [25],

MCFEM

Image MSSM MSDM

Fig. 10. Visual illustrations for visual context extraction.

Performance illustrations for MSDM on DUT-OMRON [16]. “+MSDM” and “MSDM” are our entire framework. The best performance in each group is marked by bold.

MSDM Visual context extraction Deformable kernel
+MSDM -MSDM MSDM MCFEM [40] MSSM +Deformation Backbone
Faap 0.7601 0.5899 0.7601 0.6693 0.6727 0.5682 0.5151
MAE 0.0588 0.1162 0.0588 0.0792 0.0789 0.1227 0.1403
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Image Backbone +Deformation GT

Fig. 11. Visual illustrations for the deformable convolutional kernel.

PASCAL-S [50], and DUTS [51]. On DUT-OMRON [16], our method
gets poorer performance than PFA [43] and ICTDBU [56], but beats
the other methods.

Table 2 lists Fpean and MAE values of different methods. It is
obvious that our model achieves the highest F,.., values and the
lowest MAE values among all the listed methods on ECSSD [49],
HKU-IS [25], PASCAL-S [50], and DUTS [51]. On DUT-OMRON [16]
that contains images with complex scenes, our method ranks the
third and the second in terms of Fy,, and MAE metrics, respec-
tively. In summary, our method performs robustly for various
scenes.

4.3. Ablation analysis

In this section, we conduct a series of experiments to analyze
the contributions of the two proposed modules in our model, i.e.,
MSDM and CWAM. Here we train our model with the MSRA10K
dataset [14] just using the cross entropy loss function.

4.3.1. MSDM

To clearly demonstrate the effectiveness of the proposed
MSDM, we compare our entire model with a modified version,
which is obtained by removing MSDM from our entire model.
Fig. 9 and Table 3 show some detection results and the quantitative
performance to illustrate the effectiveness of the proposed MSDM,
respectively. It can be easily found from Table 3 that the proposed
MSDM greatly improve the performance. Besides, as shown in the
top two rows of Fig. 9, MSDM can detect small and large salient
objects, which is owing to the three streams for multi-scale visual
context extraction. As displayed in the bottom two rows of Fig. 9,
MSDM can well completely detect those non-rigid salient objects
with good backgrounds suppression, which benefits from the
adaptively diverse-shape kernels provided by MSDM.

Table 4

SEN-V

PAGRN

Image

Fig. 13. Visual illustrations for the attention mechanism.

4.3.2. Visual context extraction comparison

To describe the superiority of our visual context extraction
mechanism, i.e.,, MSDM, over MCFEM in BMP [40], we compare
our model with a modified version, which is constructed by replac-
ing MSDM with MCFEM [40] in our entire model. This modified
version is also called MCFEM for short. As listed in Table 3, our
MSDM achieves better F,q, and MAE values than MCFEM. As shown
in Fig. 10, compared with MCFEM, MSDM is able to extract more
accurate shapes and clear boundaries of non-rigid salient objects.
The superiority of our MSDM mainly lies in that the deformable
convolution kernels used in our MSDM can extract diverse-shape
kernels in the real scenes, which is impossible for the dilated con-
volution kernels used by MCFEM [40].

In order to further illustrate the ability of the deformable kernel
for non-rigid visual context extraction, we compare our entire
model with another modified version, which is obtained by replac-
ing the deformable convolution with the standard convolution in
MSDM. This modified version is called Multi-Scale Standard

Performance illustrations for CWAM on DUT-OMRON [16]. “+CWAM” and “CWAM?" are our entire framework. The best performance in each group is marked by bold.

CWAM Attention mechanism
+CWAM -CWAM CWAM PAGRN SEN-V
Fadp 0.7601 0.6920 0.7601 0.7114 0.6933
MAE 0.0588 0.0739 0.0588 0.0709 0.0739
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v <
T

Image OURS GT

Fig. 14. Some failure cases.

Module (MSSM). As shown in Table 3 and Fig. 9(b), it is obvious
that MSDM gets much better performance than MSSM, which indi-
cates the effectiveness of the deformable kernel for robust visual
cues extraction.

In addition, to verify the effectiveness of the deformable kernel
in a single scale architecture, we compare the backbone network
(i.e., ResNet-50) and the modified version by adding the deform-
able convolution. As shown in Table 3, the deformable convolution
can promote the performance to a large margin, compared to the
backbone network. Besides, it can be obviously found from
Fig. 11 that the deformable convolution can achieve more whole-
ness and uniformity for the salient object.

4.3.3. CWAM

In this section, we analyze the effectiveness of the proposed
CWAM. The quantitative performance and visual illustrations are
shown in Table 4 and Fig. 12, respectively. It is obvious from Table 4
that the proposed CWAM improves the detection performance by a
large margin. In addition, it can be easily seen from Fig. 12 that
CWAM can well suppress the confusing backgrounds. This is
because that CWAM can promote those informative channels of
feature maps whereas weakening those confusing ones.

4.3.4. Attention mechanisms comparison

In this section, we discuss the superiority of our attention
mechanism, i.e., CWAM, over the state-of-the-art mechanisms,
including SEN [37] and PAGRN [22]. Specifically, SEN [37] is a
state-of-the-art attention mechanism used for classification, and
PAGRN [22] is a state-of-the-art attention mechanism based salient
object detector. The evaluation performance comparison and
visual comparison are shown in Table 4 and Fig. 13, respectively.
It can be easily found from Table 4 that our CWAM achieves much
better performance than PAGRN and SEN-V*, Besides, as shown in
Fig. 13, SEN-V introduces some background noise into the detected
saliency map, and PAGRN cannot detect those difficult salient objects
(e.g., the top three rows of Fig. 13) or misses some salient parts (e.g.,
the bottom row of Fig. 13). In contrast, our CWAM is able to accu-
rately highlight the salient objects whereas suppressing those back-
grounds. This is owing to that the proposed CWAM precisely
protrudes those informative channels whereas weakening those
unimportant ones.

4.4. Failure cases

Fig. 14 displays some challenging cases for our model. In these
cases, the foregrounds and backgrounds have quite low contrast
(as shown in the first column of Fig. 14), and the salient objects
span over a large range within the image (as shown in the fourth
column of Fig. 14). These complicated scenes make our method dif-

4 We replace the proposed CWAM with SEN in our entire model for a fair
comparison. This version is called SEN-V for short.
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ficult to identify the salient objects. Scene parsing [61,62] may be a
solution for salient object detection under these complex scenes.

5. Conclusion

In this paper, we have presented a novel deep end-to-end sali-
ent object detection framework, which consists of a MSDM and a
CWAM. Specifically, MSDM is proposed to robustly extract more
primitive visual context information, covering different scales
and varying shapes of the salient objects. CWAM is designed to
compute the channel-wise attention impactors that further pro-
mote those informative channels while suppressing those unim-
portant ones. With the aid of MSDM and CWAM, the proposed
model can well detect the salient objects with good accuracy and
completeness in various scenes. In the future, we will apply scene
parsing for salient object detection to improve the detection per-
formance in the complex scene.
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