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Engaging Part-Whole Hierarchies and Contrast
Cues for Salient Object Detection

Qiang Zhang™, Mingxing Duanmu™, Yongjiang Luo™, Yi Liu

Abstract—Real-world scenes always exhibit objects with
clutter backgrounds, posing great challenges for deep salient
object detection models. In this paper, we propose salient object
detection by engaging two saliency cues, i.e., the part-whole hier-
archies and contrast cues, resulting in a PWHCNet. Specifically,
two branches, which consists of a Dynamic Grouping Capsules
(DGC) branch and a DenseHRNet branch, are put in place to
learn the part-whole hierarchies and contrast cues, respectively.
Moreover, to help highlight the whole salient object in complex
scenes, a Background Suppression (BS) module is proposed to
guide the shallow features of DenseHRNet with the aid of the
part-whole relational cues captured by DGC. Subsequently, these
two saliency cues are integrated via a Self-Channel and Mutual-
Spatial (SCMS) attention mechanism. Experimental results on
five benchmarks demonstrate that the proposed PWHCNet
achieves state-of-the-art performance while obtaining the whole
salient objects with fine details.

Index Terms— Salient object detection, part-whole hierarchies,
contrast, attention.

I. INTRODUCTION

ALIENT Object Detection (SOD) highlights and segments

out the most visually appealing objects or regions in nat-
ural images [1]-[3]. Acting as a preprocessing step, SOD has
been applied in many computer vision fields in recent years,
e.g., weakly-supervised image semantic segmentation [4],
visual tracking [5], object recognition [6], image retrieval [7]
and video compression [8].

Hand-crafted features (e.g., color, texture, etc.) dominate the
development of earlier salient object detectors [9]-[11]. How-
ever, given the limited representation abilities of these features,
these traditional methods encounter a performance bottleneck.
In light of its powerful representation abilities, Convolutional

Manuscript received April 8, 2021; revised June 16, 2021 and July 16,
2021; accepted August 9, 2021. Date of publication August 16, 2021; date of
current version June 6, 2022. This work was supported by the National Natural
Science Foundation of China under Grant 61773301 and Grant 62001341.
This article was recommended by Associate Editor C. Yang. (Corresponding
authors: Yi Liu; Jungong Han.)

Qiang Zhang and Mingxing Duanmu are with the Key Laboratory of Elec-
tronic Equipment Structure Design, Ministry of Education, Xidian University,
Xi’an, Shaanxi 710071, China, and also with the Center for Complex Systems,
School of Mechano-Electronic Engineering, Xidian University, Xi’an, Shaanxi
710071, China (e-mail: gzhang@xidian.edu.cn; duanmu@stu.xidian.edu.cn).

Yongjiang Luo is with the School of Electronic Engineering, Xidian
University, Xi’an, Shaanxi 710071, China (e-mail: yjluo@mail.xidian.edu.cn).

Yi Liu is with the School of Computer Science and Artificial Intelligence,
and Aliyun School of Big Data, Changzhou University, Changzhou, Jiangsu
213164, China (e-mail: liuyi0089 @ gmail.com).

Jungong Han is with the Computer Science Department, Aberystwyth
University, Aberystwyth SY23 3FL, U.K. (e-mail: jungonghan77@
gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2021.3104932.

Digital Object Identifier 10.1109/TCSVT.2021.3104932

, and Jungong Han

Fig. 1.
(a) Image; (b) GT; (c) MINet [14]; (d) F3Net [16]; (¢) TSPOANet [17];
(f) Ours. TSPOANet [17]: saliency detector based on part-whole relationships;
MINet [14] and F3Net [16]: saliency detectors based on contrast information.

Illustrations for sample results of our method compared with others.

Neural Networks (CNNs) have been successfully applied for
salient object detection and achieved substantial performance
improvements [12]-[14].

Despite impressive preliminary results have been achieved
by CNNs, these methods still face some challenges. Existing
CNNs based salient object detection approaches [14]-[16]
predict the saliency map of an entire image mainly depending
on the learned contrast information of each image region.
Due to the ignorance of correlations between different object
parts, these methods struggle to extract the whole objects from
clutter scenes, which is demonstrated in the columns 3 and 4
of Fig. 1.

To alleviate the above problem, Liu and Yu [17] investigated
the role of part-whole relationships in salient object detection
with the aid of the Capsule Network (CapsNet) [18]. Here,
the salient object in a scene can be segmented out from
the complicated background by discovering familiar object
parts via exploring the part-whole relationships in the scene.
As shown in the front two rows of Fig. 1, TSPOANet [17]
can detect the whole salient objects from the backgrounds.

However, only part-whole relational cues may not be suf-
ficient to segment complete objects from extremely complex
scenes. For example, as illustrated in the last two rows of
Fig. 1, some object regions are missed by TSPOANet [17],
which may be attributed to the explored inaccurate part-
whole hierarchies. This issue may arise from the noisy capsule
assignments in TSPOANet [17], where the adopted two-stream
strategy directly divides the capsules into two groups for cap-
sules routing. Surprisingly, those missing object regions can
be identified by such contrast based methods, e.g., MINet [14]
and F3Net [16], which demonstrates the contrast cues provide
more exploration of local details compared to the part-whole
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relational cues. Based on the above observation, the two
saliency cues, including the part-whole relational and contrast
cues, can complement and reinforce each other for more robust
salient object detection.

Considering that, in this paper, we propose a PWHCNet
for salient object detection by interacting two saliency cues,
including part-whole hierarchies and contrast cues. Concretely,
two branches are put in place to explore the part-whole
hierarchies and contrast cues, respectively. In order to achieve
the complementary information between these two saliency
cues, we embed these two cues in a Self-Channel and Mutual-
Spatial (SCMS) attention module. Specifically, in SCMS,
the self-channel attention mechanism for one specific saliency
cue is achieved via the channel weights computed on this
cue itself, which helps to promote those informative chan-
nels while suppressing un-important ones. The mutual-spatial
attention mechanism provides the spatial importance for one
specific saliency cue with the aid of another saliency cue.
The combination of self-channel and mutual-spatial attentions
improves semantics for salient object detection.

Besides, to alleviate the problem of inaccurate part-whole
relationships caused by the noisy capsule assignments,
a Dynamic Grouping Capsules Routing (DGCR) strat-
egy is proposed in the part-whole hierarchies exploration
branch. Specifically, highly-correlated capsules are encouraged
to be clustered into the same group for further capsules
routing under the guidance of the proposed DGCR strategy.
Such a dynamical grouping mechanism divides the capsules
representing the same entity into the same group, which helps
to alleviate noisy capsule assignments to some extent and
thereby explores more accurate part-whole relational cues.

Similarly, to learn primitive contrast cues, a DenseHRNet
framework is proposed on top of HRNet [19] to capture
multi-scale context information with different receptive fields
from the input image. The filtered results of different sub-layer
convolutions are integrated through dense residual connec-
tions. In the meanwhile, a Background Suppression (BS)
module is put at the head of the DenseHRNet sub-network,
which aims to use the part-whole relational cues to guide
the primitive contrast extraction. The resultant contrast cues
will highlight the object regions well while suppressing the
background region. As shown in Fig. 1, our model can produce
more precise saliency maps in complex scenes, compared with
other methods.

In summary, our contributions are summarized as follows:

1). A PWHCNet is proposed for salient object detection,
which embeds the part-whole hierarchies and contrast cues
into a SCMS attention mechanism to complement the infor-
mation between them. To the best of our knowledge, it is the
first attempt to simultaneously adopt the two saliency cues for
salient object detection.

2). A DGC strategy is proposed to dynamically divide
capsules with high correlations into a group for capsules
routing, which helps to alleviate noisy capsule assignments
and thereby explore more accurate part-whole relationships.

3). A DenseHRNet framework is designed to obtain more
primitive contrast information with multiple scales while
improving the flow of information and gradients throughout
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the network. Besides, under the guidance of the part-whole
relational cues, the DenseHRNet sub-network pays more atten-
tion to the object regions.

The composition of this paper is described as follows.
Sec. II reviews the works related to our method. Sec. III
details the proposed network. Sec. IV conducts lots of exper-
iments and analyses to evaluate the proposed method. Sec. V
concludes this paper.

II. RELATED WORK
A. Saliency Detection

Traditional saliency detection methods [20]-[22] usually
rely on hand-crafted priors. An overall review about these
methods can be referred to [23]. Due to difficulties in cap-
turing high-level semantics, these methods encounter a per-
formance bottleneck. CNNs have broken this performance
bottleneck because of their powerful representation abilities.
For example, Li ef al. [24] mined multi-scale deep features
for high-precision visual saliency. In [25], a label decou-
pling framework was proposed for salient object detection by
decoupling the saliency label into subject mapping and detail
mapping. Zhang et al. [26] improved the accuracy of saliency
detection by constructing an uncertain ensemble of internal
feature units in specific convolutional layers. Cong et al. [27]
proposed a depth-guided transformation model from RGB
to RGBD saliency by capturing the explicit and implicit
information from the depth map. In order to improve the
performance of SOD, BASNet [28], EGNet [13] embedded
boundary cues into the models to highlight the boundary
regions of salient objects. In order to drive the network to dis-
cover complement object regions and details, Wang et al. [29]
aggregated multi-scale salient context information by fusing
those of multiple sub-regions. Chen et al. [30] proposed a
reverse attention module in the top-down pathway to guide
residual saliency learning.

In addition, deep contextual information has proved to
be effective for SOD [31]. Zhang et al. [32] proposed a
multi-level feature aggregation network to better integrate
global contexts and local contexts by concatenating fea-
ture maps from both high levels and low levels directly.
Wang et al. [33] used a weighted sum algorithm to integrate
the estimated local saliency with a set of searched global
salient regions to construct the final saliency map. In order
to construct informative contextual features, Liu et al. [34]
hierarchically embedded global and local context modules into
a top-down pathway. Zhu et al. [35] aggregated the attentional
dilated features by exploring the complementary information
between the global and local context. Zhang et al. [36] grad-
ually integrated multi-level contextual information through an
attention guided network. Pang et al. [14] integrated the fea-
tures from adjacent levels to obtain more efficient multi-scale
features. Readers can gain a comprehensive understanding
about these methods from [37].

The above mentioned methods try to extract more perceptual
contexts for salient object detection. However, they ignore the
fact that a target is composed of several geometric parts [38],
which will lead to incomplete segmentation of the salient
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Fig. 2. The overall architecture of our proposed PWHCNet for salient object detection, which consists of a DGC sub-network and a DenseHRNet sub-network
to capture the part-whole hierarchies and contrast cues from input images, respectively. The part-whole relational cues are additionally used to guide the
feature extraction of DenseHRNet at the shallow layer via a BS module. On top of that, the above two saliency cues are interacted by a SCMS attention
module to achieve more primitive saliency semantics F,,;, which are further used to predict the final saliency map. More details are provided in the text

body.

object. To address this problem, Liu et al. [17] proposed
a part-whole relational saliency by involving the part-whole
relational property in SOD with the aid of the Capsule
Network (CapsNet) [18]. Specifically, in [17] the activation
value of the capsule was used as the saliency value for each
position. On top of that, a TSPOANet was proposed in [17] to
get the whole saliency map through capsules routing, which
was implemented by using two streams for more accurate
part-whole relationships while reducing the network parame-
ters and noisy capsule assignments.

Different from the existing SOD methods, in this paper, two
saliency cues, including contrast and part-whole hierarchies,
are jointly used to infer the saliency map. This mechanism
allows to obtain the whole saliency map with complete local
details.

B. Attention Mechanism

Attention mechanism has been widely applied in many
fields, including machine translation [39], visual question
answering [40], semantic segmentation [41] and image
captioning [42]. In view of its advantages, the attention
mechanism has also been used for SOD. For example,
Cheng et al. [9] proposed a regional contrast algorithm to
evaluate the global contrast differences and spatial coherence
for saliency prediction. Kuen ef al. [43] designed an attention
network to identify the salient objects based on the spatial
transformer and recurrent network. Liu et al. [34] proposed
a pixel-wise contextual attention network by generating a
contextual relevant spatial weight map to selectively attend the
informative pixels for salient object detection. Li ef al. [44]
proposed an attention steered interweave fusion network

for salient object detection, which progressively integrated
cross-modal and cross-level complementarity from the RGB
image and corresponding depth map. In [45], a top-down
reverse attention mechanism was designed to guide a residual
learning by using spatial weight convolution features, which
was further embedded into each side output for residual
refinement to detect the salient object. Chen er al. [46]
designed a gated multi-modality attention module to capture
long-range dependencies from a cross-modal perspective for
RGB-D saliency detection. In order to utilize more useful
features, some methods also try to combine channel and
spatial attentions. Zhang et al. [36] proposed a progressive
attention guided network, which generated attentive features
by channel-wise and spatial attention mechanisms sequentially
to selectively integrate multi-level contextual information for
saliency detection. Zhao et al. [47] proposed a pyramid
attention based salient object detection network via capturing
the semantic high-level features and enhancing the low-level
spatial structural features by a channel-wise attention module
and a spatial attention module, respectively.

Different from the previous attention based SOD methods,
we will design a new attention mechanism to well exploit
the interaction information between the contrast cues and the
part-whole hierarchies for SOD by simultaneously considering
the intra-cues channel interaction and the inter-cues spatial
interaction.

IIT1. PROPOSED METHOD

Fig. 2 illustrates the overall architecture of the proposed
salient object detection network, which fuses part-whole hier-
archies and contrast cues to deal with the issue of inaccurate
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Fig. 3. Details of U-Res34. F,- will be used for capsule construction in our
proposed model, while F; 1 and F;, will be used to recover salient object
boundaries in the final saliency prediction stage.

segmentation of salient objects in cluttered scenes. Specif-
ically, a Dynamic Grouping CapsNet (DGC) sub-network
and a DenseHRNet sub-network are proposed to capture
the part-whole hierarchies and contrast cues from the input
images, respectively. Additionally, the explored part-whole
relational semantics are utilized to design a Background Sup-
pression (BS) module to guide the shallow feature extraction
in the DenseHRNet sub-network. On top of that, the above
two saliency cues are fully interacted by a Self-Channel and
Mutual-Spatial (SCMS) attention mechanism to predict the
final saliency map.

A. Exploring Part-Whole Relationships Stream

1) Feature Extraction for Capsules Construction: Before
the capsules routing, similar to the paradigm in [17],
a U-Res34 unit (as shown in Fig. 3) is used to extract the deep
semantic features F, from the input images. As observed from
Fig. 3, the randomly cropped input image (224 x 224 x 3)
is first fed into six basic res-blocks. To further capture the
global information, a bridge block composed of a dilation
convolution layer (dilation rate = 2) is added between the
encoder and the decoder. For the decoder, the input of each
block is the concatenation of previous upsampled feature
maps and their corresponding encoded feature maps, which
is able to integrate high-level contexts and low-level details.
On top of that, the features F, are transformed into multiple
types of matrix capsules! (16 capsules in this paper), which
is implemented by a Primary Capsule (PrimaryCaps) layer,
as in [17]. In addition to F,, as shown in Fig. 3, another
two sets of shallow features, i.e., F;; and F;,, will also be
generated from the U-Res34 unit, which will be further used
to restore the boundaries of salient objects in the final saliency
inference stage.

2) Dynamic Grouping for Capsules Routing: Considering
that CapsNet has the ability of capturing part-whole relation-
ships [17], [18], we also adopt CapsNet [18] to explore the
part-whole relational cues for saliency prediction as in [17].
However, the direct grouping strategy in [17] encounters noisy
capsule assignments, which may cause inaccurate part-whole

IEach capsule contains a 4 x 4 pose matrix M and an activation value a.
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relationships and subsequent unsatisfactory results. Alterna-
tively, taking into account the capsules correlations, we involve
a dynamic grouping strategy for CapsNet to explore more
accurate part-whole relationships in complex scenes. The
details will be illustrated in the following contents.

As shown in the top branch of Fig. 2, small circles of dif-
ferent colors indicate distinct types of capsules. The dynamic
grouping strategy is implemented before capsules routing to
facilitate high-correlated capsules grouping for capturing more
accurate part-whole relationships. In essential, capsules from
the same object will have high familiarities. Therefore, highly
familiar capsules are encouraged to be clustered into the same
group for further routing within the group by virtue of the
proposed dynamic grouping strategy, which will reduce some
noisy capsule assignments. Specifically, the proposed dynamic
grouping strategy consists of three steps, i.e., calculating
capsule correlation matrix, determining initial capsules in each
group, and putting similar capsules into the same group.

Step 1: Calculating capsule correlation matrix: The
property of a capsule is represented by its pose matrix. Thus,
we measure the correlation among capsules by calculating the
Manhattan distance (i.e., L1 norm) among the pose matrices
of different capsules. Concretely, the correlation L, , between
capsules of type m and type n is expressed as follows:

Ly = llo (Capsm) — o (Capsa)lly, )]

where Capsy/n(m,n = 1,2,..., K) represents the attribute
information for the capsule of type m or type n. K denotes
the total number of capsule types and is experimentally set to
16 in this paper as in [17]. Here, we use the Sigmoid activation
function (i.e., ¢ (x)) to compress the value of L, , to (0, 1),
thus making the calculation process easier. After splicing Ly, ,,,
the capsule correlation matrix L € R€*X is thus obtained.

Step 2: Determining initial capsules in each group:
As discussed in Step 1, the correlation coefficient Ly, , in
the correlation matrix L € RX*K represents the similarity
between the capsules of type m and type n. The larger the
correlation coefficient, the higher the dissimilarity between the
two capsules is. Then the horizontal and vertical coordinates,
01 and 07, of the maximum value in L € RX*K indicate
the serial numbers of two types of capsules with the farthest
similarity, i.e.,

[o1,02] = argmax (Ly, ), L € REXK 2)
m,n

where arg max provides the indexes for the maximum value in
the matrix L. Correspondingly, Caps,, and Caps,, are defined
as the initial capsules of two capsule groups to be constructed.
Step 3: Putting similar capsules into the same
group: The values in the one-dimensional vector, L, €
R>K (m =1,2,..., K), for the m-th row of the correlation
matrix L € RKXK represent the correlation coefficients
between the capsule of type m and those of other types. The
group with the initial capsule Caps,, (i = 1,2) that a capsule

Caps), belongs to can be determined by

Caps)p € GCapso,7 where o0j = argmin (Lp,oi) , 3)
: i=1,2
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where L, o, (p = 1,2,...,16, p # 0;,i = 1,2) represents
the correlation coefficient between the remaining 14 capsules
and the 2 initial capsules. argmin returns the index for the
smaller one between L, ,, and L ,,. With this step, we may
dynamically divide the capsules into two groups G| and G».

By performing the same steps mentioned above on Gi,
we may further obtain two new capsule groups. Similarly,
we obtain another two new capsule groups by performing the
same steps on Ga. Thus, we finally obtain four capsule groups,
i.e., Goi, Goz, Goz, Gog, with strong correlation within each
group.

Capsules routing. There is a 4 x 4 trainable transformation
matrix W;; between each capsule i(i € Qu) in layer N and
each capsule j(j € Qu41) in layer N + 1. Qn denotes the
set of capsules in layer N. The pose matrix M; of capsule
i is transformed by W;; to cast a vote V;; = M;W;; for
the pose matrix M; of capsule j. V;; and g; are utilized for
routing to obtain the poses and activations of all capsules
in the N + 1 layer, which is achieved through an iterative
Expectation-Maximization (EM) algorithm [18]. More details
can be seen in [18].

In this way, the part-whole relationships within the image
are obtained by assigning associated parts to their familiar
wholes. Similar to [17], the activation values from the last
convolutional capsule layer are used as the final feature maps
Fpo for the next stage.

B. Extracting Contrast Information Stream

1) Initial Feature Extraction for Contrast Cues: In order to
facilitate the extraction of contrast cues, as shown in Fig. 2
and similar to that in [19], a set of initial features Fy are
first extracted in the DenseHRNet branch via a Downsampling
Node, which is constructed by two convolutional layers and
four residual blocks.

2) BS Module for Highlighting the Foreground Regions:
Although local details are captured by contrast information,
salient objects in cluttered or low-contrast scenes, e.g., low-
contrast between foreground and background, are still difficult
to be segmented out from the background accurately just
according these local details. Notably, the position of the
salient object can be located through the part-whole relational
cues. Considering that, a Background Suppression (BS) mod-
ule is further appended on the Downsampling Node to guide
the primitive contrast extraction, which aims to produce more
fine details while effectively suppressing complex backgrounds
and highlighting the salient object regions.

Fig. 4 illustrates the details of the proposed BS module,
in which the objectness prior maps learned by the DGC
sub-network are utilized to generate channel-wise spatial atten-
tion. The entire process is formulated as follows:

Fps =Fo © [1 +o (Conv (Fpo; /}1))] , 4)

where Fps, Fo and Fpp represent the outputs of the BS
module, the Downsampling Node and the DGC sub-network
in Fig. 2, respectively. © means the operation of the element-
wise multiplication. Conv(x; ') denotes a convolutional
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Fig. 4. The architecture of BS module. Fpp and F( represent the outputs
of the DGC sub-network and the Downsampling Node in Fig. 2, respectively.

block with its parameters #', which is responsible for trans-
forming the channel number of Fpp into the same as that
of Fy. The value of the spatial weight map is activated by the
Sigmoid operation, i.e., o ().

3) DenseHRNet for Contrast Information: To make the
potential spatial features more precise, we propose the
DenseHRNet sub-network based on HRNet [19] to maintain
high-resolution representations while ensuring the maximum
information flow between the network output layer and the
middle layers. As shown in the bottom branch of Fig. 2, dense
residual connections are embedded to integrate the filtering
results of different sub-layer convolution kernel operations in
the proposed DenseHRNet sub-network. This embedding of
such residual connections improves the flow of information
and gradients throughout the network, which makes them easy
to train.

Actually, the DenseHRNet sub-network is similar to
HRNet [19]. While, the difference between them is whether
the features of middle sub-layers are used. The small modifica-
tion leads to substantially different behaviors between the two
networks. As shown in Fig. 2, Fc and F,, , (u,0 =1,2,3,4)
represent the final output of the network and the features of
each layer. The output of the original HRNet can be written
as:

F¢ = Cat (F4,U) , where v =1,2,3,4, 5)

where Cat denotes concatenating feature maps along the
channel dimension. Differently, the output of the DenseHRNet
sub-network can be formulated as:

Fc = Cat (F,“)) , where u,v=1,2,3,4. 6)

Due to such dense residual connections, the final features
not only integrate the features of different layers, but also
aggregate all the features of the previous layers at different
scales. The feature maps learned by any of the DenseHRNet
layers can be accessed by the last layer. Besides, when the gra-
dient is propagated back, partial information can directly reach
each middle layer without going through the deep network.
This forces the middle layer to learn more distinguishable
features. Therefore, more accurate contrast information can
be obtained by the proposed DenseHRNet sub-network.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on June 22,2022 at 02:51:08 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: ENGAGING PART-WHOLE HIERARCHIES AND CONTRAST CUES FOR SOD

CiIxHxW

F,

self
Self-branch

C2xHxW

F,

mutual

® Matrix multiplication @ Element-wise addition O Element-wise multiplication

Fig. 5. The architecture of SCMS module. Shadow regions marked by brown
and blue colors represent the SCC unit and the MWSA unit, respectively.
‘W-ASP’ refers to the Weighted Atrous Spatial Pyramid (W-ASP) sub-module.

C. Attention Fusion Mechanism for Two Cues Integration

Considering different characteristics of the two cues, i.e.,
contrast cues prefer to capture object details and part-whole
relational cues prefer to detect the object wholeness, they
can complement to each other to improve the saliency pre-
diction. While simple addition or cascading operation cannot
fully extract enough useful information for the saliency map.
Besides, the features of the same cue usually are affluent
in spatial or channel aspect, and also include redundant
information. To overcome such issues, a Self-Channel and
Mutual-Spatial (SCMS) attention module is designed to auto-
matically select those important features for the prediction of
salient regions. The SCMS attention module consists of two
units: a Self-branch Channel Correlation (SCC) unit and a
Mutual-branch Weighted Spatial Attention (MWSA) unit. The
structure of SCMS is shown in Fig. 5.

1) SCC: Different channels of features in CNNs gener-
ate various responses for different semantics and perform
differently for highlighting the salient object [48]. This is
significant to filter inaccurate features and focus more on
valuable features. For that, we assign larger weights to those
channels that show higher responses on salient regions by
calculating the correlation matrix among channels. In this way,
long-range dependencies along the channel dimension will
be well exploited, thus capturing more comprehensive chan-
nel characteristics for the feature selection. This is different
from the traditional channel-wise attention module, where the
weight for each channel is calculated in a channel-independent
way.

The orange regions shaded in Fig. 5 show the detailed struc-
ture of the proposed SCC. First, we apply 1 x 1 convolution and
reshape operations to transform the self-branch input features
Fyep € ROHXW 1o W, € ROHW  After that, a channel
correlation matrix is generated by performing matrix multipli-
cation and normalization operations on W, and its transpose.
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Negative values in the correlation matrix are suppressed by
ReLU activation function. Finally, the output features Fgcc of
SCC are obtained by the matrix multiplication of the channel
correlation matrix with the original self-branch input features.
The entire process is written as:

W, = Nor(Reshape (COHV (Fself; ,82))) , 7
Fsce= (Nor(ReLU(Wq quT))) x Reshape (Fyerr), (8)

where Nor(x) means normalizing the values in the channel
correction matrix to [0, 1]. Reshape(*) means to transform
Fyep from the size C1 x H x W to C1 x HW.

2) MWSA: The two cues from the two-stream network
contain different semantic information. The part-whole hierar-
chies are responsible for the whole saliency regions, while the
contrast cues provide precise details. In order to effectively
combine the semantic features from the above two cues,
we design an MWSA unit to capture the long-range spatial
dependencies across the two cues, as shown in the blue
regions shaded in Fig. 5. Specifically, a spatial attention map
is generated from MWSA by using some atrous convolutional
pyramid operations to further provide spatial guidance for the
output of SCC Fgscc. More specifically, the input features
Foiwar € RE2XHXW of the mutual branch are first fed
into a Weighted Atrous Spatial Pyramid (W-ASP) sub-module
to extract their enhanced multi-scale contextual information
Fy_asp € RE2XHXW Then similar to that in SCC, a 1 x 1
convolution layer and a reshape operation are performed on
Fw_asp, thus obtaining W, € RAEWXCs - After that, a spatial
correlation matrix is generated by performing matrix multipli-
cation and normalization operations on W, and its transpose.
The output features Fpwsa of MWSA are thus obtained by
the matrix multiplication of the spatial correlation matrix with
the output of SCC Fgcc.

Especially, as shown in Fig. 5, an Atrous Spatial Pyra-
mid Pooling (ASPP) operation with the same structure as
in [49] but with different dilation rates (i.e., 1, 3, 5 and 7)
is first employed to capture some initial multi-scale contex-
tual information Fsp € RE2XHXW from the input features
Fiuruar in the W-ASP sub-module. Then a 3 x 3 convolu-
tional layer together with a global averaging pooling (GAP)
layer is performed on the input features F;,;,q4 to generate
a set of channel-wise weights Fyeignr € RC€2. With the
channel-wise weights F,¢;¢,, enhanced multi-scale contextual
information Fg_x5p € RC2*H*W g obtained by perform-
ing a channel-wise multiplication operation on the extracted
F4sp. By doing so, the useful multi-scale features in F4gp
will be enhanced while some disturbing information will be
suppressed. The final output features Fyy_s5p of W-ASP is
obtained by further performing a convolution layer on the
addition of Fr_45p with the original input features F,;1,q-
Mathematically, the whole process of the proposed MWSA
unit can be expressed as follows:

FASP = ASP (qutual) 5 (9)
Fucighi = 0 (GAP (Conv (Furuar: £°))) . (10)
Fe_asp = Fueignt O Fasp, (1)
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Fi—asp = Conv (Fe-asp + Fuuruars 5*) (12)
W, = Nor (Reshape (Conv (FW_ASP; ﬁs)))
c RHW><C3’ (13)

FMWSA = FSCC X (NOI‘ (RGLU (Wa X WaT))) 5 (14)

where GAP refers to the global average pooling operation.
ASP is the operation of stacked dilation convolutions with
different dilation rates of 1, 3, 5, and 7. Finally, we add Fywsa
and Fy. s to obtain the final output features Fgcys of the
proposed SCMS module so that the original self-branch input
features are retained, which can be written as:

Fscus = Conv (Reshape’ (Fywsa) + Foerr),  (15)

where Reshape’ denotes the inverse process of Reshape.

As shown in Fig. 2, two SCMS modules are applied
to integrate the features of two cues. When Fpp is the
self-branch features and F¢ is the Mutual-branch features
(i.e., Fseify Fpuuruar and Fgcys are Fpo, Fe and FLQ,, o,
respectively), the local details of the part-whole hierarchies are
enhanced based on the contrast cues. Similarly, when F¢ is the
self-branch features and Fpp is the Mutual-branch features
(i.e., Fserf, Fruuar and Fgcys are Fe, Fpo and FgCMS’
respectively), the object wholeness of the contrast cues are
enhanced based on the part-whole hierarchies. Finally, the final
output features F,,; from the two SCMS modules are obtained
by concatenating Fg’gMS and FgCMS, Le.,

Four = Cat (FchMS» FgCMS) .

3) Different From Previous Attention Mechanism Algo-
rithms: Here we mainly discuss the uniqueness of the pro-
posed SCMS module compared to the attention mechanisms
in [50] and [51].

1) Comparison with non-local operation in [50]. Non-local
operations in [50] can calculate the dependencies among all
spatial positions, but the correlation among different channels
is not considered. Differently, we focus on spatial attention
while considering channel correlation, which can highlight
regions and channels that are critical to the saliency map.
Besides, the spatial correlation obtained by the proposed
MWSA is more accurate than that obtained in [50] because
of the introduction of the W-ASP structure, which can better
suppress confusing information while maintaining multi-scale
contextual information than the traditional ASPP module.

2) Comparison with DANet in [51]. The similarity between
our SCMS module and DANet in [51] lies in the simul-
taneous application of channel and spatial attention. While,
the differences between them mainly lie in the following two
folds. First, our SCMS module embeds the W-ASP structure
in MWSA to capture multi-scale contextual information. Sec-
ondly, we use the spatial weights generated by the two cues
to interactively guide feature extraction for better mining the
complementary advantages of the two cues.

(16)

D. Saliency Inference

The resolutions of the output features F,,; from the two
SCMS modules mentioned above are 56 x 56. Simply using
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operations, e.g., linear interpolations, to upsample F,,; to the
size of 224 x 224 (i.e., the size of ground truths) will cause
object boundary blurs. While, this can be alleviated with the
aid of shallow features that usually possess higher resolutions
and contain more details about the input images. For that,
the shallow features F;; and F;» from the U-Res34 unit are
also exploited via a Upsampling Node to assist the prediction
of final saliency maps for accurate boundaries in our proposed
model, since Fy | and F7; contain more details about the input
images than the features extracted from the Downsampling
Node. As shown in Fig. 2, the Upsampling Node is constructed
by stacking upsampling and concatenation operations, and the
process can be mathematically expressed by

Fnia = Conv (Cat (Up (Fuu)  F12): °)

P = Conv (Cat (Up Fmia),Fr1); 137) >

a7)
(18)

where P refers to the final saliency map. Up means upsampling
operation by bilinear interpolation.

E. Loss Function

For training the network, the cross-entropy loss function
in [52] and the IoU boundary loss function in [53] are used to
train the saliency prediction. The cross-entropy loss function
is defined as:

1 H W
LCE = THxwW z Z[G(m, n)logP(m, n)

m=1n=1

+ (1 — G(m, n))log(l — P(m,n))], (19)

where G (m, n) € {0, 1} is the ground truth label for the pixel
(m,n). P (m,n) is the predicted probability of being salient
object for the pixel (m,n). W and H represent the width and
height of the input image, respectively.

IoU is originally proposed for measuring the similarity of
two sets [54] and has been used for saliency detection in [53].
It can be defined as:

Liou
H W
2 2 P(m,n)G(m,n)

m=1n=1

|
—_
|

>

ﬁMm
M=

3
Il

[P (m,n)+ G (m,n) —P (m,n)G (m,n)]
(20)

The final joint loss function that is used to train our proposed
model is constructed by combining the cross-entropy loss
function and the IoU Boundary loss function, i.e.,

ﬁjoint = LcE + Liou- (21)
IV. EXPERIMENTS
A. Datasets
We comprehensively evaluate our model on five
benchmarks: DUTS [55], HKU-IS [24], ECSSD [56],

DUT-OMRON [57] and PASCAL-S [58]. The DUTS is a
challenging dataset, which consists of 10,553 training images
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and 5,019 testing images in complicated scenes. ECSSD
contains 1000 images of high content varieties. HKU-IS
consists of 4447 images with multiple disconnected objects.
The images in this dataset have diverse spatial distributions,
and the similar appearances between the foreground regions
and the background regions make it more difficult to
distinguish the salient objects. DUT-OMRON is composed
of 5168 images with different sizes and complex structures.
PASCAL-S includes 850 challenging images.

B. Evaluation Criteria

We use five metrics to evaluate the proposed method, i.e.,
Precision-Recall (PR) curve, F-measure [59], E-measure [60],
S-measure [61] and Mean Absolute Error (M AE) [62].

1) PR Curves: Precision and recall values are computed
by comparing the binary saliency map with the ground truth
to plot the PR curve with different thresholds in the range
of [0, 255]. Specifically, Precision = TP/(T P + FP) and
Recall =TP/(TP+FN), where TP, FP and F N represent
true-positive, false-positive and false-negative, respectively.
The larger the area under the PR curve, the better the per-
formance is.

2) F-Measure: Fp is formulated as the weighted harmonic
mean of precision and recall, i.e.,

(1 +,b’2) - Precision x Recall
B?% - Precision + Recall

Fp = , (22)
where 2 is set to 0.3 to emphasize the precision over
recall as suggested in [59]. Here, we report the maximum
F-measure (Fj,,,) computed from all precision-recall pairs and
use an adaptive threshold that is twice the mean value of the
prediction to calculate the mean F-measure (Fyy;).

3) E-Measure: E, combines local pixel values with the
image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

4) S-Measure: S, computes the object-aware and region-
aware structure similarities between the prediction and the
ground truth, which can be written as:

Sp=0a So+1—a) S, (23)

where a is set to 0.5. S, and S, represent the prediction and
the ground truth, respectively.

5) MAE: MAE is defined as the average pixel-wise
absolute difference between the normalized prediction and the
ground truth:

1

H W

m=1n=1

where P and G represent the saliency maps and the ground
truth, respectively.

C. Implementation Details

We implement our model on Pytorch 1.0.0. An NVIDIA
GTX 1080 Ti GPU (with 11GB memory) is used for both
training and testing. The DUTS training dataset containing
10553 images is used to train the network. Before training,
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the dataset is augmented by horizontal flipping to avoid the
over-fitting problem. During the training stage, each image is
first resized to 256 x 256 and randomly cropped to 224 x 224.
The U-Res34 is initialized from the ResNet-34 model [63].
The DenseHRNet sub-network parameters are initialized by
the weights pretrained on the ImageNet. Other convolutional
layers are initialized by Xavier [64]. The stochastic gradient
descent (SGD) model is adopted to train our model, where the
initial learning rate, momentum and weight_decay are set to
le-3, 0.9 and 0.0005, respectively. We adopt the exponential
decay strategy with base 0.95 to gradually decrease the learn-
ing rate. Our network is trained with a mini-batch of 4. The
whole training process takes about 65 hours. The code and
results will be released.

D. Comparison With State-of-the-Arts

We compare the proposed algorithm with 13 state-of-the-
art salient object detection methods, including F3Net [16],
ITSD [65], MINet [14], GCPANet [66], EGNet [13],
SCRN [67], CPD [15], AFNet [68], BASNet [28], MLM-
SNet [69], TSPOANet [17], PAGE [70] and JointCRF [71]. For
fair comparisons, all the saliency maps of the above methods
are generated by running their source codes or pre-computed
by their authors.

1) Quantitative Comparison: To fully compare the pro-
posed method with state-of-the-art approaches, we report the
detailed experimental results in terms of the five metrics,
which are listed in Table I. As can be seen clearly, the proposed
algorithm consistently performs better than the competitors
across all of the five metrics on most datasets. In particular,
in terms of Fy,, and S,,, the performance is improved by
more than 1% on the three most challenging data datasets
(i.e., DUT-OMRON, DUTS and HKU-IS). This indicates our
model achieves good structural similarities with the ground
truth.

In addition, we display PR curves and F-measure curves
in Fig. 6. In terms of both PR curves and F-measure curves,
our approach (red solid line in Fig. 6) keeps the best results on
DUT-OMRON, DUTS-TE, HKU-IS and ECSSD, and is also
competitive with others on PASCAL-S.

Furthermore, we compare the floating point operations
(i.e., FLOPs), the number of parameters (i.e., Params) and
the inference time (i.e., Time) with other popular methods
in Table II. Input sizes of different methods are set according
to their released codes. The comparisons in Table II show that
our model is slightly more complicated than other methods,
which may be owe to the complex capsule routing algorithm
in DGC sub-network.

2) Qualitative Evaluation: To further illustrate the superior
performance of our method, Fig. 7 shows the visual compar-
isons of our model and other methods by displaying some
images covering different scenarios, including low contrast,
similar backgrounds, small objects and multiple objects. It can
be easily seen that our proposed method can highlight the
whole salient objects with satisfactory uniformity. In contrast,
the methods using contrast cues (i.e., (e)-(1) in Fig. 7) just
detect parts of the salient objects and fail to capture the whole
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TABLE I

COMPARISONS OF THE PROPOSED METHOD AND OTHER 13 METHODS ON FIVE BENCHMARK DATASETS IN TERMS OF MAXIMUM AND MEAN
F-MEASURE (LARGER IS BETTER), E-MEASURE (LARGER IS BETTER), S-MEASURE (LARGER IS BETTER) AND MAE (SMALLER IS BETTER).
THE BEST THREE RESULTS ARE HIGHLIGHTED IN RED, GREEN AND BLUE, RESPECTIVELY.“-R” MEANS THE RESULTS

ARE ACHIEVED WITH THE RESNET-50/101 BACKBONE ON THIS METHOD

Model DUT-OMRON DUTS-TE HKU-IS ECSSD PASCAL-S

Fmaz Favg BEm Sm MAE|Fmaz Favg Em Sm MAE|Fmaz Favg Em Sm MAE|Fmaz Favg Em Sm MAE|Fmaz Favg Em Sm MAE
Ours 0802 0786 0.876 0850 0055 | 0.884 0864 0930 0898 0035 | 0937 0918 0957 0929 0026 | 0945 0928 0953 0932 0031 | 0859 0838 0900 0.866 0.062
F3Net [16] 0778 0766 0.864 0.838 0053 | 0872 0852 0920 0.888 0035 | 0925 0910 0952 0917 0028 | 0935 0925 0948 0924 0033 | 0848 0835 0898 0861 0.061
IITSD [65] 0792 0768 0865 0840 0061 | 0.868 0840 0914 0885 0041 | 0926 0903 0947 0917 0031 | 0939 0921 0947 0925 0034 | 0855 0831 0895 0859 0.066
MINetR [14] | 0769 0757 0860 0.833 0056 | 0865 0.844 0917 0.884 0.03 0926 0909 0952 0919 0029 | 0938 0923 0950 0925 0033 | 0846  0.830 0.896 0.856 0.064
GCPANet [66] | 0775 0756 0.853 0.839 0056 | 0869  0.841 0912 0891 0039 | 0927 0901 0945 0920 0031 | 0936 0916 0944 0927 0035 | 0849 0829 0895 0.864 0.062
EGNetR [13] | 0778 0760 0.857 0841 0053 | 0866  0.839 0907 0.887 0039 | 0924 0902 0944 0918 0031 | 0936 0918 0943 0925 0037 | 0841 0823 0881 0852 0074
SCRN [67] 0772 0749 0848 0.837 0056 | 0864  0.833 0900 0.885 0040 | 0921  0.894 0935 0916 0034 | 0937 0916 0939 0927 0037 | 0856 0833 0892 0869 0.063
CPD-R [15] 0754 0742 0847 0825 0056 | 0840  0.821 0898 0.869 0043 | 0911  0.892 0938 0905 0034 | 0931 0913 0942 0918 0037 | 0833 0819 0882 0848 0071
AFNet [68] 0759 0742 0846 0.826 0.057 | 0.839 0812 0893 0.867 0046 | 0910 0888 0934 0905 0036 | 0924 0905 0935 0913 0042 | 0844 0824 0883 0849 0070
BASNet [28] 0779 0767 05865 0836 0.056 | 0.838 0823 0895 0.866 0.048 | 0919 0902 0943 0909 0032 | 0931 0917 0943 0916 0037 | 0835 0818 0879 0838 0076
MLMSNet [69] | 0.734 0710 0.831 0.809 0.064 | 0.828 0792 0.883 0.862 0049 | 0910 0878 0930 0907 0039 | 0917 0890 0927 0911 0045 | 0835 0.807 0876 0.844 0074
TSPOANet [17]] 0750 0728 0840 0818 0061 | 0828  0.800 0.885 0860 0049 | 0909  0.884 0932 0902 0038 | 0919 0899 0928 0907 0046 | 0830 0809 0872 0.842 0.077
PAGE [70] 0758 0743 0849 0.824 0062 | 0815 0793 0883 0.854 0052 | 0907  0.884 0935 0903 0037 | 0924 0904 0936 0912 0042 | 0830 0811 0878 0.842 0076
JointCRF [71] | 0755 0737 0838 0821 0057 | 0793 0764 0854 0836 0059 | 0905 0879 0925 0903 0039 | 0914 0888 0921 0907 0049 | 0827 0792 0852 0.841 0.082

DUT-OMRON DUTS-TE PASCAL-S

09sH|-

Precision
Precision

Precision
Precision

Recall
DUTS-TE

Recall

DUT-OMRON

F-measure

F-measure

0s
o 0 100 150 200 250 o S0 100 150 200 250 o s0 100

Threshold Threshold

Fig. 6. PR curves (17 row)

TABLE II

THE NUMBER OF PARAMETERS, FLOPS AND INFERENCE TIME
COMPARISONS OF OUR METHOD WITH SOME
STATE-OF-THE-ART NETWORKS

. FLOPs Params Time
Method Input size
G) M) (s)

F3Net [16] 352 x 352 1643 25.54  0.022
ITSD [65] 288 x 288 1594  26.07 0.022
GPACNet [66] 320 x 320 54.31 67.06 0.020
BASNet [28] 256 x 256 127.40 87.06 0.032
MINet-R [14] 320 x 320 87.03 162.38 0.036
EGNet-R [13] 380 x 320 287.67 111.66 0.091
Ours 256 x 256 137.64 153.26 0.167

objects in low contrast scenes or similar backgrounds (as
shown in the first six rows of Fig. 7). Furthermore, the objects
and the backgrounds cannot be well distinguished by these
methods, resulting in poor saliency maps with background
noise interference in complex scenes (as illustrated in the 6,
7" and 8" rows of Fig. 7). Besides, for those scenes with
multiple objects, the compared methods miss some salient
object parts, while our approach can locate all the salient
objects and predict complete object shapes. This results from
the fact that these methods ignore the correlation among

Threshold

150 200 250 0 0 100 150 20 250 o S0 100 150 200 250
Threshold Threshold

and F-measure curves (Z”d row) on the five saliency detection datasets.

different object parts. Fortunately, our method can effectively
suppress background noise while detecting the whole salient
objects in various scenes. This owes to the fact that the
part-whole hierarchies are added in our proposed model to
infer the saliency maps.

In addition, although TSPOANet can also obtain the whole
salient objects for some scenes, the problem of blurred edges
is not well solved (as illustrated in the 157, 24 10" and
117" rows of Fig. 7(d)). Differently, more accurate prediction
maps can be obtained by adding contrast cues in our method.
As well, in the scenes with similar backgrounds or low contrast
(e.g., the 374, 4" and 5 rows in Fig. 7), TSPOANet cannot
predict the complete salient objects. But our method shows
perfect performance. This may owe to the proposed dynamic
grouping strategy for capsules routing in our proposed model,
which can better reduce the noise distribution of capsules than
the fixed grouping strategy in TSPOANet. As a result, the pro-
posed method can consistently produce more accurate and
complete saliency maps with sharp boundaries and coherent
details in these challenging scenes than TSPOANet, as shown
in Fig. 7.

E. Ablation Study

In this section, we carry out a series of experiments to
validate the effectiveness of each key component used in our
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Fig. 7.

Visual comparisons of different methods. (a) Image; (b) GT; (c) Ours; (d) TSPOANet [17];

(g) (h) (@ (k) (O]

(e) MINet [14]; (f) F3Net [16]; (2) EGNet [13];

(h) GCPANet [66]; (i) SCRN [67]; (j) AFNet [68]; (k) PAGE [70]; (1) JointCRF [71].The right side indicates the name of the dataset for each image, including
ECSSD (EC) [56], DUT-OMRON (DO) [57], DUTS-TE (DS) [55], PASCAL-S (PS) [58] and HKU-IS (HI) [24].

network. The ablation study contains two parts: different com-
ponents and different capsule grouping strategies. The ablation
experiments are conducted on the challenging DUT-OMRON
dataset and DUTS-TE dataset.

1) Different Components: To prove the effectiveness of
each component in our model, we report the quantitative
comparison results in Table III. Here, “B” denotes the common
basic model (ResNet-50). “H” and “H™” represent the original
HRNet [19] and the improved HRNet (i.e., DenseHRNet),
respectively. “PO” and “PO™” mean fixed grouping and
dynamic grouping strategies adopted in the capsule network,
respectively. “H* 4+ PO means that the output Fpo from
DGC and the output F¢ from DenseHRNet are integrated by
the element-wise addition operation (Here, the BS module is
not used in this structure). “HT +PO™ 4+ BS” denotes that the
background suppression module is inserted into DenseHRNet.
“H* + PO™ + BS+ S-C” denotes that two SCMS modules
are used to integrate “H*” and “POT”. It should be also
noted that the same feature extraction method shown in Fig. 2

(i.e., U-Res34 and Downsampling Node are used before the
DGC sub-network and DenseHRNet sub-network, respec-
tively) are used for all of these ablation experiments mentioned
here.

As shown in Table III, by comparing the 15" and 2"¢ rows,
we can see that F-measure increases by more than 1% if
“H”, instead of “B”, is used as the baseline. This proves that
maintaining high-resolution representations through the whole
process can improve the detection performance. By embedding
residual connections in HRNet [19], DenseHRNet (i.e., “H™”)
has further improved the performance while hardly increasing
FLOPs and the number of parameters, which can be illus-
trated by observing the “H” and “H™” rows in Table III.
Similarly, the comparison of “PO” and “PO™” indicates that
the proposed dynamic grouping capsules strategy can improve
performance without increasing FLOPs and the number of
parameters. Besides, it can be observed from the comparison
between “H 4+ PO” and “H” or “PO” in Table III that the
idea of integrating the above two cues is feasible, which
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TABLE III
ABLATION STUDIES OF DIFFERENT COMPONENTS. THE BEST
PERFORMANCE IS MARKED BY BOLD. “B” REPRESENTS THE
COMMON BACKBONE (RESNET-50). “H” AND “H1”
REPRESENT THE HRNET [19] AND THE DENSEHRNET,
RESPECTIVELY. “PO” AND “PO1” MEAN FIXED
GROUPING AND DYNAMIC GROUPING STRATEGIES
ADOPTED IN THE CAPSULE NETWORK,
RESPECTIVELY. “BS” AND “S-C” DENOTE THE
BS AND SCMS MODULES, RESPECTIVELY
. DUT-OMRON DUTS-TE FLOPs Params
Configurations
Faz Favg MAE Fray Favg MAE (G) (M)
B 0.754 0.740 0.057 0.833 0.810 0.040 7.86 33.61
H 0.768 0.753 0.061 0.848 0.828 0.042 26.98 66.32
PO 0.758 0.736 0.065 0.840 0.814 0.046 111.92 86.41
H + PO 0.772 0.761 0.062 0.852 0.836 0.041 137.04 152.68
Ht 0.786 0.762 0.059 0.866 0.838 0.039 27.10 66.77
po+t 0.758 0.742 0.064 0.848 0.826 0.044 111.92 86.41
Ht + POT 0.792 0.772 0.057 0.870 0.848 0.037 137.14 153.13
H' + POt + BS 0.799 0.778 0.056 0.878 0.854 0.036 137.33 153.19
Ht + POt + BS + S-C 0.802 0.786 0.055 0.884 0.864 0.035 137.64 153.26

can significantly improve the saliency detection performance.
Meanwhile, the proposed “H™ + PO™” achieves consistently
higher performance than “H + PO” does by integrating “H*”
and “PO™”. On top of “H* 4+ PO™”, we progressively extend
it with different units, including background suppression (i.e.,
“BS”) and SCMS (i.e., “S-C”) modules. The results in the last
two rows of Table III illustrate the effectiveness of each unit.
As can be seen, our PWHCNet architecture achieves the best
performance among these configurations. In addition, it can
be seen from the columns FLOPs and Params in Table III
that a large number of parameters are mainly caused by the
DGC sub-network, which covers complex capsule routing.
Reducing the complexity of the capsule network to implement
an efficient architecture is what we need to optimize further.

Visual comparisons can be found in Fig. 8. As shown
in Fig. 8(g-i), the proposed DenseHRNet sub-network can bet-
ter capture the salient object regions than the traditional basic
model and the original HRNet [19] do. Moreover, the whole
saliency maps can be well obtained by further combining the
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® (i)

Visual comparisons with different components. (a) Image; (b) GT; (c) “Ht” + “POT” + “BS” + “S-C”; (d) “HT” + “PO1T” + “BS”; (e) “H1” +

part-whole hierarchies with DenseHRNet, as can be shown
in Fig. 8(e) and (f). By comparing (d) and (e) in Fig. 8, it can
be easily observed that the background noise is suppressed by
virtue of the BS module. Besides, it can be also noticed from
Fig. 8(c) that the two salience cues can be well integrated by
the proposed SCMS module.

2) Capsule Grouping Strategies: To prove the effectiveness
of the proposed dynamic grouping algorithm for capsules rout-
ing, we report the quantitative comparison results in Table I'V.
Here, “O” and “T” represent the original CapsNet [18]
(i.e., no grouping for capsules routing) and the improved
two-stream CapsNet (i.e., directly dividing capsules into two
groups without distinction for capsules routing) in [17], respec-
tively. “D,” (y = 2,4, 8) denotes that capsules are dynami-
cally divided into y groups according to the proposed dynamic
grouping method.

In Table IV, the 157 and 2"? rows show the performance
using the fixed grouping strategy (i.e., HT 4+ T) and using
the dynamic grouping strategy (i.e., “H™ + D,”). Numeri-
cally, the dynamic grouping strategy is effective and further
alleviates the noise distribution phenomenon. In addition,
we find that the number of groups also has an impact on the
performance in the experiment. As shown in the last three rows
of Table 1V, dividing capsules into 4 groups (i.e., “HT +Dy4”)
achieves the best performance. The reason for the performance
degradation by dynamically dividing capsules into 8 groups
(i.e., “H' + Dg”) may be that a little fewer capsules in
each group are not enough to characterize the part-whole
hierarchies.

The visualization in Fig. 9 also illustrates the above
quantitative results. Allowing each low-level capsule (part)
to vote for all the high-level ones (object) will sometimes
generate noisy assignment, thus giving rise to performance
declines. By comparing (d) and (e) in Fig. 9, the grouping
strategy in [17] does predict a better saliency map com-
pared to the original capsule in [18]. Moreover, as seen
from Fig. 9(c) and Fig. 9(d), it is obvious that the dynamic
grouping strategy can produce better saliency maps by further
alleviating the noise distribution phenomenon.
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TABLE IV

ABLATION STUDIES OF DIFFERENT CAPSULE GROUPING STRATEGIES.
THE BEST PERFORMANCE IS MARKED BY BOLD. “O” DENOTES
NO GROUPING STRATEGY. “T” AND “D, ” (y = 2,4, 8)
REPRESENT FIXED GROUPING STRATEGY AND DYNAMIC
GROUPING STRATEGIES WITH DIFFERENT GROUP
NUMBERS, RESPECTIVELY

. DUT-OMRON DUTS-TE

Configurations

maz  Favg MAE  Fras  Favg MAE
Ht +0 0.769 0.753 0.060 0.847 0.830 0.040
HY +T 0.782 0.763 0.058 0.861 0.838 0.039
H' + D2 0.791 0.767 0.058 0.868 0.841 0.039
H' + Dy 0.792 0.772 0.057 0.870 0.848 0.037
H' +Dg 0.790 0.769 0.057 0.867 0.845 0.038

(@) (b) © @ @©

Fig. 9. Visual comparisons with different capsule grouping strategies.
(a) Image; (b) GT; (c) Ht 4+ Dy; (d) HT +T; (e) HT + 0.

TABLE V

ABLATION STUDIES OF DIFFERENT FEATURE EXTRACTION
ARCHITECTURES FOR DGC SUB-NETWORK. THE BEST
PERFORMANCE IS MARKED BY BOLD. HERE, THE CAPSULES
ARE DYNAMICALLY DIVIDED INTO FOUR GROUPS

Feature Extraction DUT-OMRON DUTS-TE
Architectures Friaz Favg MAE Fraw Favg MAE
Two Conv+ReLU layers 0.506 0.452 0.195 0.552 0482 0.182
FLNet 0.712  0.695 0.071 0.797 0.769 0.055
U-Res34 0.758 0.742 0.064 0.848 0.826 0.044

3) Feature Extraction Architectures for DGC Sub-Network:
As discussed in TSPOANet [17], the feature extraction
stage before capsules routing is critical to explore the part-
whole relationships. To demonstrate the validity of U-Res34,
we replace U-Res34 in our proposed DGC sub-network with
FLNet in [17] or the two Conv+ReLU layers in the original
CapsNet [18]. It can be easily observed from Table V that
U-Res34 boosts the saliency detection performance of our
proposed model significantly. As shown in Fig. 10(c-e), it is
obvious that U-Res34 makes the framework possess the ability
of identifying the salient object wholly, which is attributed to
the rich features learned by U-Res34.

4) Different Integration Strategies: To demonstrate the
advantages of the proposed integration strategy (i.e., SCMS
module) over Non-local [50] and DA [51] modules, we report
the quantitative comparison results in Table VI. As shown
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Fig. 10.  Visual comparisons with different feature extraction architectures
for DGC sub-network. (a) Image; (b) GT; (c) U-Res34; (d) FLNet in [17];
(e) Two Conv+ReLU layers.

(2)

TABLE VI

ABLATION STUDIES OF DIFFERENT INTEGRATION STRATEGIES.
THE BEST PERFORMANCE IS MARKED BY BOLD

Integration Strategies DUT-OMRON DUTS-TE

maz Favg MAE Fray Faug MAE
Baseline (HT + PO T) 0.792 0772 0.057 0.870 0.848 0.037
+ Non-local [50] 0.799 0.772 0.060 0.880 0.850 0.037
+ DA module [51] 0.800 0.781 0.056 0.881 0.858 0.035
+ SCC 0.789 0772 0.055 0.876 0.853 0.036
+ MWSA 0.796 0782  0.056 0.880 0.859 0.035
+ SCMS 0.802 0.786 0.055 0.884 0.864 0.035

in Table VI, it can be seen that the proposed SCMS module
can obtain the competitive performance compared with non-
local [50] and DA module [51]. Meanwhile, from the last three
rows of Table VI, it can be seen that the performance obtained
by only using SCC or MWSA is inferior to that obtained by
using SCMS. This demonstrates that simultaneously consider-
ing the intra-cues channel interaction and the inter-cues spatial
interaction indeed helps to improve performance.

5) Different Initial Feature Extraction Strategies for DGC
and DenseHRNet: In addition to our current initial fea-
ture extraction strategy (Res34-DN, for short, i.e., U-Res34
for DGC and Downsampling Node for DenseHRNet),
we re-trained our proposed model by applying another four
different feature extraction strategies, i.e., two Downsampling
Nodes with the same structures and shared weights (DNs-
identical, for short), two U-Res34s with the same structures
and shared weights (Res34s-identical, for short), two Down-
sampling Nodes with the same structures but different weights
(DNs-different, for short) and two U-Res34s with the same
structures but different weights (Res34s-different, for short) to
extract the initial features for DGC and DenseHRNet branches.
The experimental results are shown in Table VII.

As shown in Table VII, we can see that DNs-different,
Res34s-different and Res34-DN significantly outperform
DNs-identical and Res34s-identical. This indicates that apply-
ing two different modules for the initial feature extraction of
DGC and DenseHRNet is a more reasonable way than employ-
ing two identical modules for the initial feature extraction of
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TABLE VII

ABLATION STUDIES OF DIFFERENT INITIAL FEATURE EXTRACTION
STRATEGIES. THE BEST PERFORMANCE IS MARKED BY BOLD

. DUT-OMRON DUTS-TE Time
Strategies
maz  Favg MAE Fpae Favg MAE  (5)

DNs-identical 0.796 0.769 0.064 0.872 0.841 0.047 0.129
Res34s-identical  0.789  0.771  0.060  0.871 0.848 0.042 0.133
DNs-different 0.801 0.772 0.063  0.875 0.847 0.040 0.131
Res34s-different  0.802 0.784 0.056 0.882 0.861 0.036 0.171
Res34-DN 0.802 0.786 0.055 0.884 0.864 0.035 0.167

Fig. 11.
(¢) Ours.

Some failure cases for our proposed method. (a) Image; (b) GT;

DGC and DenseHRNet does. This may owe to the following
facts. DGC and DenseHRNet focus on capturing different
cues for salient object detection. Specifically, DGC focuses on
mining the part-whole hierarchies whilst DenseHRNet focuses
on mining the contrast cues. Employing different initial fea-
tures for DGC and DenseHRNet, respectively, may benefit
the extraction of different cues for salient object detection.
In addition, from Table VII, it can also be easily observed that
Res34-DN performs competitively with Res34s-different and
outperforms DNs-different in terms of F-measure and MAE.
As well, the proposed Res34-DN strategy achieves higher
inference efficiency than Res34s-different does.

F. Failure Cases

Fig. 11 shows some failure cases for our proposed method.
The scenes in those images contain some unique scenes.
It can be seen that, under the effect of part-whole hierarchies,
some objects with certain relations are detected together,
e.g., computer and keyboard, table and sofa, television and
television cabinet, etc., instead of one individual object as
masked by the ground truth. We will study this issue as the
future work, which may be solved using scene parsing [72].

V. CONCLUSION

In this paper, we have proposed a PWHCNet for salient
object detection by interacting part-whole hierarchies and
contrast cues, which consists of two branches, including a
part-whole relationships exploration branch and a contrast
cues extraction branch. Specifically, the former exploits the
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dynamic grouping strategy to obtain more accurate part-whole
relationships while the latter captures multi-scale contrast
information through the DenseHRNet. In addition, the above
two cues are interacted and integrated by the proposed BS
and SCMS modules to retain useful features for the final
saliency map. Extensive experiments validate that our pro-
posed algorithm can well detect the whole salient objects
together with their accurate boundaries even in the cluttered
scenes. Moreover, our model outperforms some current state-
of-the-art methods on five datasets.

It should be also noted that high saliency detection results
obtained by our proposed model are at the cost of complex
architectures, which limits its applications in some other vision
tasks. In the future, we will further reduce the complexity of
the capsule network to achieve a smaller architecture for SOD
tasks while maintaining the saliency detection accuracy.
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