Neurocomputing 563 (2024) 126916

- — -

Contents lists available at ScienceDirect

Neurocomputing
journal homepage: www.elsevier.com/locate/neucom
. . . . Check for

Deep unsupervised part-whole relational visual saliency e
Yi Liu?, Xiaohui Dong?, Dingwen Zhang ®*, Shoukun Xu?
aSchool of Computer Science and Artificial Intelligence, Aliyun School of Big Data, and School of Software, Changzhou
University, Changzhou, Jiangsu 213000, China
b School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, China
ARTICLE INFO ABSTRACT
Communicated by R. Cong Deep Supervised Salient Object Detection (SSOD) excessively relies on large-scale annotated pixel-level labels

which consume intensive labour acquiring high quality labels. In such precondition, deep Unsupervised Salient
Object Detection (USOD) draws public attention. Under the framework of the existing deep USOD methods,
they mostly generate pseudo labels by fusing several hand-crafted detectors’ results. On top of that, a Fully
Convolutional Network (FCN) will be trained to detect salient regions separately. While the existing USOD
methods have achieved some progress, there are still challenges for them towards satisfactory performance
on the complex scene, including (1) poor object wholeness owing to neglecting the hierarchy of those
salient regions; (2) unsatisfactory pseudo labels causing by unprimitive fusion of hand-crafted results. To
address these issues, in this paper, we introduce the property of part-whole relations endowed by a Belief
Capsule Network (BCNet) for deep USOD, which is achieved by a multi-stream capsule routing strategy
with a belief score for each stream within the CapsNets architecture. To train BCNet well, we generate
high-quality pseudo labels from multiple hand-crafted detectors by developing a consistency-aware fusion
strategy. Concretely, a weeding out criterion is first defined to filter out unreliable training samples based
on the inter-method consistency among four hand-crafted saliency maps. In the following, a dynamic fusion
mechanism is designed to generate high-quality pseudo labels from the remaining samples for BCNet training.
Experiments on five public datasets illustrate the superiority of the proposed method. Codes have been released
on: https://github.com/Mirlongue/Deep-Unsupervised-Part-Whole-Relational- Visual-Saliency.
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1. Introduction consistency perspectives and trains on DHSNet [8]. Afterwards, a few
works [9-11] activate the development of deep USOD. These works
Salient Object Detection (SOD) aims at identifying and segmenting mostly generate pseudo labels from hand-crafted methods through

the attractive regions in a given image. Due to its property, SOD has enforcing inter-image consistency and then train their models. During
been widely used in a range of research aspects and applications, e.g., the training, multiple hand-crafted saliency results will be updated
segmentation [1,2], image fusion [3], image retrieval [4], and object separately through using the deep network, which are used to generate

recognition [5]. In the deep learning era, deep Supervised SOD (SSOD)
has achieved significant progress over the traditional hand-crafted
methods [6]. However, existing deep SSOD methods excessively rely
on the high-quality pixel-level annotation labels, which consume heavy
labour and hardly cover all the natural scenes. Alternatively, deep
Unsupervised SOD (USOD) can cast off the reliance on the annotation
labels. In this paper, we focus on deep USOD.

There have been some attempts for deep USOD to this day. For
example, Zhang et al. [7] make the earliest effort for USOD with-
out using pixel-level human annotations, which generates the pseudo
labels from hand-crafted detectors in intra-image and inter-method  FCN detecting the high-contrast salient regions may cause poor object

updated pseudo labels for a new training epoch. To improve the quality
of pseudo labels, the uncertainty is mined for each hand-crafted method
for further refining pseudo labels. On top of pseudo labels, a Fully
Convolutional Network (FCN) is trained to detect salient objects by
learning discriminative saliency cues. While the existing USOD methods
have achieved some progress, their performance is still far from being
satisfactory. This bottleneck is derived from two folds: (i) The sim-
ple FCN architecture that usually adopts a backbone without specific
designs has limited power to capture the discriminative features, e.g.,
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Fig. 1. Motivation statement. The pseudo labels is adopted from [10] as the initializa-
tion. BCNet and consistency-aware dynamic fusion help to capture the object wholeness
and filter background. Their integration achieves a further improvement.

wholeness, as shown in Fig. 1(a); (ii) The non-satisfactory quality of
pseudo labels degrades the network training.

To address the first problem, we introduce the property of part-
whole relations endowed by CapsNets [12] into the task of deep USOD.
Rather than a direct and primitive embedding, we design a Belief
CapsNet (BCNet) to capture the object wholeness for salient objects.
Concretely, a multi-stream sparse capsule routing strategy is designed
to reduce the complexity of the capsule routing. A confidence score
is additionally computed for each stream to highlight those important
streams while suppressing those noisy streams. As shown in Fig. 1(c),
our BCNet can improve the object wholeness by enhancing the inner
details capture and background noise suppressing.

To address the second problem, i.e., training our BCNet for deep
USOD, we propose a consistency-aware fusion strategy to generate
high-quality pseudo labels. First, the intersection and union opera-
tions are used to define two image-level consistency criteria, including
weeding out criteria and fusion criteria. The former aims to weed out
unreliable training samples, enhancing the robustness of the network
training. The latter is used to select the fusion methods, including the
union fusion strategy for high inter-method consistency and the dy-
namic fusion algorithm for low inter-method consistency.! Especially,
under the circumstance of low inter-method consistency, an iterative
dynamic fusion algorithm is designed to generate high-quality labels.
In the iterative dynamic fusion algorithm, we define a label quality
measure metric to calculate the similarity between saliency map of each
hand-crafted method and the current pseudo label, which is activated
by softmax to compute the balanced weight for each hand-crafted
method for further updating the current pseudo label. The generated
high-quality pseudo labels using our consistency-aware fusion strategy
are used to train BCNet to generate better saliency inference. As shown
in Fig. 1(b), our consistency-aware fusion induced pseudo labels reduce
the background noise significantly. Further to say, the integration
of our two designations makes the saliency predictions closer to the
ground truth (see Fig. 1(d)) and achieves better performance with
less training time (see Fig. 2), compared with the other deep USOD
methods.

To sum up, the contributions of the paper can be concluded as:

(1) The property of part-whole relations is introduced in the task of
deep USOD. To the best of our knowledge, this is the first attempt to
employ part-whole relations for deep USOD.

(2) A BCNet architecture is designed to capture the object wholeness
with a confidence multi-stream strategy, which reduces the implemen-
tation complexity and enhances the part-whole relations representa-
tion.

! The two fusion methods, union fusion strategy and dynamic fusion
algorithm for high/low inter-method consistency are included in the module
called dynamic fusion mechanism. Their relationship will be clearly discussed
in Section 3.3.2.
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(3) A consistency-aware fusion strategy is proposed to generate
high-quality pseudo labels, which help to enhance the performance of
network training.

The remainder is organized as follows. In Section 2, we review the
related works. Then, details of our method are disclosed in Section 3.
Section 4 presents complete experimental results to demonstrate the
advantages of our method and we draw conclusions in Section 5.

2. Related work

In this section, we focus on those works related ours, including deep
SSOD, deep weakly SSOD, deep USOD and CapsNets.

2.1. Deep SSOD

In 2014, Han et al. [13] first introduced deep learning for salient
object detection, which was achieved by a deep reconstruction network.
Henceforth, deep learning, especially CNNs, sweeps across the field of
SOD. For example, Li et al. [14] extracted multi-scale deep features
for saliency detection. Wang et al. [15] proposed to learn local and
global saliency cues to detect the salient object. Liu et al. [8] designed
a two-stage network, which generated coarse saliency predictions and
refinement, respectively. Zhang et al. [16] aggregated multi-level fea-
ture maps into multiple resolutions to detect the salient object. Wu
et al. [17] designed a cross refinement unit to refine multi-level features
simultaneously. Zhang et al. [18] proposed an attention network to
selectively integrate multi-level context information for saliency pre-
diction. Wang et al. [19] implemented salient object detection with
the helps of pyramid attention and the task of salient edge detection.
Zhao et al. [20] designed a context-aware pyramid feature extrac-
tion module for capturing rich saliency context features for further
saliency prediction. Wang et al. [21] conducted top-down and bottom-
up saliency inference in a joint and iterative manner inspired by human
perceptual processes. Wang et al. [22] proposed an attentive saliency
network with efficient recurrent mechanism to refine saliency features
from fixation map. Wei et al. [23] decomposed the saliency map into
two parts, including one focusing on objects’ center areas and another
concentrating on edge details. Pang et al. [24] interacted adjacent-
layer features via mutual learning and self-interaction to capture the
multi-scale information. Tu et al. [25] embedded the edge prior in
a hierarchical manner to learn boundary-aware saliency maps. Hu
et al. [26] recurrently translated and aggregated context using a spatial
attenuation context module. Ke et al. [27] fused efficiently contour and
saliency using a recursive strategy.

Deep SSOD relies on large amounts of pixel-level manual anno-
tations, which consume intensive labour. Differently, our USOD can
tackle the demand for large-scale manual annotations, which will help
to enhance the generalization of SOD for various scenes.

2.2. Deep weakly SSOD

While deep SSOD methods have achieved significant improvements,
they rely on large-scale high-quality annotations, which consume huge
labour cost. Deep Weakly SSOD provide a feasible solution, which uses
low-cost labels to achieve a balance between performance and annota-
tions cost. For example, Wang et al. [28] supervised the network with
image-level labels. Li et al. [29] carried out the task of salient object
detection using the weak contour knowledge. Zeng et al. [30] adopted
diverse weak supervision sources to provide enough information in
training, including image-level tags, image captions, and unlabelled
data. Zhang et al. [31] used scribble annotations to relabel the salient
object detection dataset for model training. Zhang et al. [32] attempted
to train the salient object detection network with a few training images.
Piao et al. [33] proposed a multi-filter directive network to extract and
filter saliency cues from noisy pseudo labels.

Those existing deep weakly SSOD methods still require an amount
of non-pixel-level manual annotations, such as image level labels.
Differently, our USOD network can further discard the dependence on
manually annotated labels.
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Fig. 2. Performance and training time (hour) for different deep USOD methods. It can be seen that we achieve better performance with less training time, compared with the

other deep USOD methods.

2.3. Deep USOD

Further, deep USOD was proposed, which can implement SOD
without human annotation labels. Zhang et al. [7] began this task via
an intra-image and inter-image fusion to build the saliency detection
network from hand-crafted approaches. In the following, several at-
tempts have been devoted to deep USOD. For example, Zhang et al. [9]
built a noise model to fit the gaussian distribution, which helped
to generate better pseudo labels from several hand-crafted methods.
Zhang et al. [34] exploited the model consistency to identify inliers and
outliers in noisy labels to infer high-quality pseudo labels for further
network training. Nguyen et al. [10] performed saliency detection
via refinement from hand-crafted methods with semantic information
pretrained on other vision tasks. Wang et al. [11] built an uncertainty
mining network to parse pseudo labels.

Different from the previous deep USOD methods that train a simple
FCN without additional designs, our work incorporates the property of
part-whole relations in deep USOD and designs a BCNet to enhance the
wholeness of salient objects. Besides, we weed out some negative sam-
ples for pseudo labels generation, which is neglected by the previous
deep USOD detectors.

2.4. CapsNets

While CNNs have achieved promising performance for visual recog-
nition by identifying the existence of object parts, they will be fooled
by a simple spatial structure disturbance. To this end, CapsNets [12,35]
design clever dynamic routing algorithms to capture the part-whole
relationships in an image to enhance the equivalence of the network.
Many attempts have been devoted to CapsNets architectures [36-
38]. For example, Lenssen et al. [36] defined a group equivariant
capsule layer to enhance the property of equivariance to CapsNets.
Rajasegaran et al. [38] built a deep architecture to CapsNets employing
3D convolution.

In light of the excellent property of CapsNets, they have been
successfully embedded in the task of saliency detection. For instance,
Liu et al. [39] employed CapsNets to visual saliency, in which CapsNets
were utilized to explore the part-whole relationships in the image to
achieve the whole object saliency. Later, they consolidated their work
by further using the capsule maps as guidance to learn more primitive

saliency cues [40]. Zhuge et al. [41] utilized CapsNets for a part-
whole verification module to enhance the agreement between parts and
objects. Zhang et al. [42] engaged the complementary between contrast
cues learned by CNNs and part-whole relations discovered by CapsNets
to detect the salient object. Liu et al. [43] embedded CapsNets in a
two-stage encoder—decoder structure for the task of camouflaged object
detection, which is a SOD related task.

Different from the existing CapsNets based SOD methods that focus
on deep SSOD, our work tackles the problem of deep USOD with an
efficient embedding of CapsNets, in which a confident multi-stream
architecture is proposed to highlight those primitive capsule routing
streams induced part-whole relations.

3. Proposed method

In this section, we elaborate details about the proposed framework.
As shown in Fig. 3, the entire framework consists of three compo-
nents, including saliency cues refinement, Belief CapsNet (BCNet), and
consistency-aware fusion for pseudo labels generation. Specifically,
the input is fed into a backbone network, e.g., ResNet-101 [44], to
learn deep backbone features, which are further input in BCNet to
capture the object wholeness semantics by exploring part-whole rela-
tions. To get pseudo labels for training BCNet, the input image and
four hand-crafted methods’ saliency maps are fed into the refinement
module, which is utilized to refine four hand-crafted methods (MC [45],
HS [46], DSR [47], RBD [48]), and the consistency-aware fusion mod-
ule, which is developed to generate high-quality labels via exploring
the consistency among several hand-crafted methods.

3.1. Saliency cues refinement

For a fair comparison of our model with the previous methods, in
accordance with the previous methods, e.g., SBF [7], USPS [10], and
UMNet [11], we select four traditional hand-crafted methods, including
MC [45], HS [46], DSR [47], and RDB [48],% to generate the coarse
saliency maps.

2 The selected methods are definitely consistent with those of the previous
unsupervised methods [7,10,11].
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Fig. 3. Overview of the proposed USOD framework. The input is fed into a backbone to learn deep backbone features, which are further input in a Belief CapsNet (BCNet) to
capture the object wholeness semantics by exploring part-whole relations. In parallel, the deep backbone features are fed into the saliency cues refinement module to refine the
hand-crafted saliency maps. The following consistency-aware fusion strategy generates high-quality pseudo labels to train the network.

The selected saliency maps are refined separately in the saliency
cues refinement module. Specifically, we choose ResNet-101 [44] as
our backbone network to learn deep backbone features, which are
further fed into the Historical Moving Average (MV A) module [10].
This can be formulated as

MVA =(1-)XxMVA™ 4+ ixp1, @)

where p'~! is the saliency prediction of epoch (i — 1). MV A*~! is the
forward pass result at epoch (i — 1) and the MV A° is 0. 1 is a balance
parameter. Similar to [10], we repeat Eq. (1) for 25 epochs to obtain
the refined saliency maps (M V A%).

In Historical Moving Average (M V' A) module of [10], they add fully
connected Conditional Random Field (CRF) on the saliency prediction
p of epochs. Different to them, we discard CRF, which achieves 27 h
reduced.

3.2. BCNet for salient object detection

Details of BCNet are described in Fig. 4, which consist of three
components, including multi-stream strategy, stream confidence score
and part-whole relational attention.

3.2.1. Multi-stream strategy

The input feature maps (44 x 44 x 512) are divided into four
streams along the channel dimension, which are fed into CapsNets [12]
to learn the part-whole relations within each stream separately. Specif-
ically, each stream contains one (ReLu + Conv (with stride of 2))
layer, one Primary Capsule (PrimaryCaps) layer, and one Convolutional
Capsule (ConvCaps) layer.® In each stream, the last ConvCaps layer
outputs two types of capsules (22 x 22 x 2 x 17) corresponding to
salient capsule and background capsule, respectively. This ensures a
sparse routing for reducing the complexity, compared with the original
capsule network [12].

3.2.2. Stream confidence score

Different streams sharing the same architecture learn different part-
whole relational knowledge due to their different input features, which
will cause different contributions of different streams to the final

3 These layers can be referred to TSPOANet [39].

saliency detection. To highlight those important streams while sup-
pressing those confusing streams, we compute a confidence score for
each stream to measure its contribution. To achieve this, the input
feature maps (44 x 44 x 128) are used to compute a score value via a
convolution with stride of the feature maps scale, i.e., 44. The confident
score will be multiplied with the output capsule activation values of
ConvCaps to obtain the confident part-whole relational semantics.

3.2.3. Part-whole relational attention

Multi-stream confident part-whole relational semantics are upsam-
pled and integrated via addition to achieve the part-whole saliency
prediction Sal’® (44 x 44 x 2), which can be used to guide the
backbone features to learn better saliency cues. First, the backbone
feature maps Sal®® (44 x 44 x 2) can be learned by a convolution on
the backbone feature maps. On top of that, the part-whole relational
attention can be written as

Sal'" = f,, (fe (Sal®®, Sa1"0),2), @)

where f,,(-,2) and f,.(-) represent the operations of convolution with
output channel of 2 and concatenation, respectively. Sal4" is upsam-
pled to the original input resolution as the final saliency map.

3.2.4. Difference to TSPOANet [39]

The main difference between our BCNet and TSPOANet [39] lies
in three folds: (i) Our BCNet incorporates the part-whole relations for
deep USOD while TSPOANet [39] focusing on deep SSOD; (ii) Our
BCNet designs a multi-stream strategy to further reduce the complexity
of capsule routing over the two-stream strategy of TSPOANet [39]; (iii)
A confidence score for each stream helps to highlight those important
streams while suppressing unimportant streams, which is ignored by
TSPOANet [39] that performs a fully-connected capsule routing to
integrate two streams with high complexity.

3.3. Consistency-aware fusion

The refined hand-crafted saliency maps in Eq. (1) will be integrated
to generate high-quality pseudo labels. To achieve this, a consistency-
ware fusion strategy is proposed, which consists of two steps, including
weeding out negative samples and dynamic fusion mechanism. Details
will be described in the following.



Y. Liu et al.

Relu+Convy PrimaryCaps
: Jx 17
1, [
1 3
128 "/m (3 "/a
Relu+Conv PrimaryCaps
l Jx 17
i [
10 3
128
i o B / o
Relu+Conv PrimaryCaps
512 - G =~ AR~~~ =i
1 8 17
—1s
10 3[
128
q I'/"1 3 g .'/i
Relu+Conv PrimaryCaps
l ‘)a {17
=y [
1 3
128
“/Ei 3 n‘/m

@ Capsule

ConvCaps

ConvCaps

full connect
________________________ |
“37-4 ‘)x v
— —
- b x
/ 2 +
Sull connect
________________________ :
217 \/8 e v
— —

ConvCaps

Neurocomputing 563 (2024) 126916

/ [ ] x ?
b
8
’ * i .
ConvCaps Sfull connect °

® Activation

Fig. 4. Details of BCNet. A multi-stream strategy is designed for CapsNets, which is further improved with a confidence score in each stream to highlight those important streams

while suppressing those confusing streams.

Fig. 5. Negative samples with low inter-method consistency.

3.3.1. Weeding out negative samples

Different hand-crafted methods possess different saliency priors,
which will cause the inconsistency between four hand-crafted meth-
ods. As shown in Fig. 5, low inter-method consistency implies an
unreliable label, which will confuse the network training and degrade
the performance. To address this problem, we design a consistency-
aware weeding out mechanism to filter out the negative samples. First,
we define the inter-method consistency involving the detected salient
regions for four hand-crafted detectors, i.e., salient regions detected
by only one method (f}), only two methods (f,), only three methods
(f3), and only four methods (f,), respectively. The consistency can be
written as

fa=n({Sal;,Vi},4),
fr=u{n({Sal;,Vi},3)} - f4,
fr=u{n({Sal;,Vi}.2)} = f3 = fu,
fi=u({Sal,Vi},4) - fr— f3— fu.
where Sal; is the saliency map of the hand-crafted method i. U and n
represent the union and intersection operations, respectively.
U ({Sal,-,Vi} ,n) and N ({Sali,Vi} ,n) represent the union and intersec-

tion of any n methods, respectively.
The weeding out criterion is formulated as

4 4
XHl Y fi<n )
i=3 i=1

where y is the inconsistency threshold. Eq. (4) will weed out those low
inter-method consistency samples. In this paper, u is set to 0.4, which
weeds out 1% samples of the entire training samples.

To give a comprehensive understanding of f|, f,, f3, and f,, Fig. 6
shows their visualization results of two examples. As shown from the

3

Fig. 6. Visualizations for the weeding out criterion. Top and bottom images are
negative and positive samples, respectively.

top image in Fig. 6, hand-crafted methods infer in-consistent saliency
maps, which cannot well identify the salient object. Differently, from
the bottom image of Fig. 6, hand-crafted methods infer consistent
saliency maps, which segment the salient object well. Besides, as shown
in Fig. 6, f, detects very few salient regions, such as only the ob-
ject boundary in the bottom image, while f, focusing on the regions
identified by four methods simultaneously. Based on the weeding out
criterion, the top image is weeded out from the training set due to
Zj; fi /Zf:] fi < 04, while the bottom image being saved in the
training set due to Y1, £,/ | f; > 0.4.

3.3.2. Dynamic fusion mechanism

From the remaining hand-crafted saliency maps, we design a dy-
namic fusion mechanism to generate high-quality pseudo labels. To
this end, a fusion criterion based on the inter-method consistency is
first defined. On top of the fusion criterion, we design two fusion
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Algorithm 1 Dynamic fusion algorithm. fus is the fused result, ie.,
the pseudo label, of each iteration. w;(i = 1,2,3,4) are the balanced
weights for different hand-crafted methods, including MC [45], HS
[46], DSR [47], RBD [48]. softmax is the activation function.
Procedure Dynamic fusion algorithm (Sal;)
Initialization:

w; =wy =w; =wy =1/4,
for ¢ iterations do

1. fusion_step:
4

fus =Y (Sal; x w;),
i=1
2. weightistep:
d; =dis (Sal,-,fus),
w; = softmax (d;).
end

mechanisms, including the union fusion strategy and the dynamic
fusion algorithm,* to generate pseudo labels.

Component 1: Fusion criterion. As the definition of Eq. (3), f;
and f; are defined as the inter-method consistency from one method
and three methods, respectively. It is obvious that f; and f; define
a low inter-method consistency and a high inter-method consistency,
respectively. More concretely, /|, means those salient regions that are
detected by only one of four methods, while f; refers to those salient
regions that are detected by three of four methods. Therefore, the
salient regions of f, will be less confident than the salient regions of
/3. Inspired by this observation, the salient regions of f; and f; can
be treated as the low-confidence and high-confidence salient regions,
respectively. On top of that, we define the fusion criterion as U
which reveals the inter-method consistency between four hand-crafted
saliency maps. Specifically, a small/high ;—; means a high/low inter-

method consistency. For the low %, we choose the simple fusion, i.e.,
3

union fusion, to generate pseudo labels. For the high 5 we design a
dynamic fusion algorithm to generate pseudo labels. A’threshold 6 is
defined to measure the inter-method consistency degree. In this paper,
we define 6 as %

Component 2: Union fusion strategy. If L <9 a high inter-
method consistency is assumed for four hand-crafted saliency maps. In
this case, we adopt the union operation of four hand-crafted saliency
maps to generate the pseudo labels, i.e., f;.

Component 3: Dynamic fusion algorithm. If 11 > 9, alow inter-
method consistency is assumed for four hand-crafted saliency maps.
In this case, a dynamic fusion algorithm is proposed to integrate four
hand-crafted saliency maps to generate high-quality labels.

A label quality measure metric is first defined as

dis(x,y):—ln(l—Fﬂ(x,y)z). ()
Fy(x, y) is defined as

F =(1+ 4% XXy 6
3 (X, ) ( +ﬂ)ﬁ2><x+y’ (6)

where 2 = 3.

Fy(x,y) in Eq. (6) measures the similarity between x and y. Sim-
ilarly, the similarity between saliency map of hand-crafted method i
and the current pseudo label fus can be formulated as

d; = dis (Sal;, fus) . )
The balanced weight for Sal; when fusing can be written as

w; = softmax (d;) . (C))

4 Dynamic fusion mechanism is higher-level than dynamic fusion algorithm
in terms of concept.
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Fig. 8. Curves of the function and its derivative of Eq. (5). It can be seen that the
derivative beyond 0.85 is large, which helps to discriminate the consistency between
four hand-crafted saliency maps that have F; being around 0.85.

Algorithm 1 details the dynamic fusion algorithm. At the initial-
ization, the average weight is used to set for the balanced weight
w;. On top of that, two steps, including fusion_step and weight_step,
are iterated to generate the pseudo label via fusion and compute the
balanced weights, respectively. Several iterations can achieve labels
with high quality. In this paper, 3 iterations have achieved not-bad
pseudo labels, which can be visually found in Fig. 7.

Insight into the label quality measure metric. The curves of
Eq. (5) and its derivative are described in Fig. 8. The dis’ is the
derivative of the dis(x,y) function in Eq. (5). We draw their curves
to illustrate dist has a significant derivative when F; > 0.85. That
is, when F; > 0.85, our dis(x,y) function in Eq. (5) can tackle their
subtle changes of F;. Fortunately, the selected hand-crafted methods,
including MC [45], HS [46], DSR [47], and RBD [48], share the values
of F; beyond 0.85. Therefore, our dis(x, y) function in Eq. (5) can tackle
the integration of these hand-crafted methods.

Difference to the existing pseudo labels generations. The main
difference between our pseudo labels generation strategy and that of
the existing deep USOD methods lies in: (i) We weed out some negative
training samples, which is neglected by the existing methods and may
degrade their network training; (ii) We propose a dynamic fusion
algorithm to substitute for the complex CRF to compute the pseudo
labels on top of MVA, while the most existing methods, e.g., USPS [10]
and UMNet [11], utilizing CRF on top of MVA to generate the pseudo
labels.

3.4. Loss function

Similar to USPS [10], we adopt the image-level loss function w.r.t
each training example to supervise BCNet for training. The image-level
loss function can be written as

L=1-F;(p.pl), (€)
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where p and pl/ represent the forward prediction and the pseudo label
obtained. Fy is defined in Eq. (6). In Eq. (9) and #? = 2. L is a linear loss
and more robust to outliers and noise compared to high-order losses
such as mean square error.

4. Experiment and analysis

In this section, we will conduct experiment to understand and verify
the proposed method.

4.1. Implementation details

We implement our experiments on two GTX 3090 Ti GPUs. We use
the adam optimizer [49] with the momentum of 0.9, learning rate of
le-6 and batch size of 20. The training set of MSRA-B [50] is chosen as
the training dataset. MC [45], HS [51], DSR [47], RBD [48] are selected
as four handcrafted methods. The image is resized to 352 x 352.

4.2. Dataset and evaluation metric

We evaluate the performance of our model on five benchmark
datasets, details of which are described as follows.

4.2.1. Dataset

ECSSD [46] contains 1000 images collected from the Internet. These
images are with complicated structures. DUT-O [52] has 5168 images
with different sizes and complex structures. The backgrounds are very
complicated to stand out the salient objects. HKU-IS [14] consists of
4447 images with multiple disconnected objects. It is divided into 3000
training images and 1447 test images. We evaluate our methods and
other state-of-the-art methods on the test datasets. DUTS [28] contains
10533 training images and 5019 test images. The images in this dataset
are with different scenes and various sizes. We use the test dataset
to evaluate our model and the compared methods. PASCAL-S [53]
includes 850 images describing various scenes.

4.2.2. Evaluation criteria

We evaluate the performance of our model as well as other state-
of-the-art methods from both visual and quantitative perspectives. The
quantitative metrics include F-measure, Mean Absolute Error (MAE),
S-measure, and E-measure. Given a continuous saliency map, a binary
mask B is achieved by thresholding. Precision is defined as Precision =
|BN G|/|B|, and recall is defined as Recall = |Bn G|/|G|, where G is
the corresponding ground truth.

F-measure is an overall performance indicator, which is computed
by

(14 p?) Precision x Recall

F, = . 10
4 p? Precision + Recall 10)

As suggested in [54], 2 =0.3.
MAE is defined as
w H

W:(H ZZ'S(ivf)—G(i,j)l, 11D
i=1 j=1

MAE =

where W and H are the width and height of the image, respectively.
S-measure (S,,) [55] is computed by

S,=aS,+(1—a)S", 12

where S, and S, represent the object-aware and region-aware structure
similarities between the prediction and the ground truth, respectively.
a is set to 0.5 [55].

E-measure (E,,) [56] combines local pixel values with the image-
level mean value to jointly evaluate the similarity between the predic-
tion and the ground truth.
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Fig. 9. Visual comparison of each component of the proposed network. BCNet and
CAF can both suppress background noise and get better object wholeness. The entire
network (BCNet + CAF) enhances the performance with respect to each individual
component.
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Fig. 10. Visual comparison of w/CRF vs. w/o CRF. Left four columns, reveal that
w/0 CRF suppresses the background noise compared with w/CRF. Besides, right two
columns show that w/o CRF sharps the edge details of salient objects.

4.3. Ablation study

In this subsection, we will conduct several ablation studies to anal-
yse the proposed method.

4.3.1. Different components

To analyse the contributions of each component of the proposed
network, Table 1(a) lists the performance of different components. In
Table 1(a), “Base” is composed by the saliency cues refinement module
as well as the backbone network and there are two findings: (i) BCNet
and CAF both improve the performance compared with the base model;
(ii) The entire network (BCNet + CAF) enhances the performance with
respect to each individual component. These can be confirmed by
Fig. 9.

4.3.2. w/o CRF vs w/CRF

In our saliency cues refinement, we remove CRF from that of
USPS [10], which is necessary for the previous methods. To verify the
removal of CRF, Table 1(b) lists the performance using labels generated
w/ and w/o CRF on BCNet. It can be seen that our pseudo labels with-
out CRF beat those with CRF significantly on various datasets. Besides,
due to removing CRF, our work saves 27 h for saliency cues refinement,
compared to USPS [10]. Fig. 10 depicted visual comparisons of w/o
CRF vs. w/CRF. Specifically, w/o CRF enhances the background noise
suppression (left four columns of Fig. 10). Besides, w/o CRF sharps
the edge details of saliency objects (right two columns of Fig. 10). The
explanation for the superiority of w/o CRF can be seen in Fig. 11. As
shown in Fig. 11, the involvement of CRF will make two problems: (i)
Large background regions with high contrast will be judged as salient
regions (left four columns of Fig. 11); (ii) Object boundaries with high
similarity to the background will be mistaken as background (right four
columns of Fig. 11). Due to these issues, w/o CRF generates better
labels and infers better saliency maps in Fig. 10, compared with w/CRF.
Besides, Table 1(b) also tells that our pseudo labels beat the pseudo
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Table 1

Ablation Analysis. The best and second best methods are marked by bold and underline for each part, respectively. “CAF” means consistency-aware fusion.
Component settings ECSSD [46] DUTS [28] DUT-O [52] HKU-IS [14]

MAE| F;t  S,t E,t MAE| Ft S,t E,t MAEl Ft S,t E,t MAE| F1 S,1 E,1

(a) Performance (%) of different components.
Base 6.19 87.57 86.40 90.26 6.98 73.90 79.07 84.18 6.60 72.85 79.54 84.09 4.07 88.18 88.08 92.77
+ BCNet 5.97 87.94 86.85 90.45 6.76 74.61 79.55 84.39 6.36 7346 7999 8431 391 88.58 88.47 92.99
+ CAF 6.27 87.92 86.30 89.90 6.58 75.46 79.49 8430 6.18 74.17 79.94 84.18 4.03 88.89 88.18 92.67
+ BCNet + CAF 6.01 88.26 86.91 90.71 6.56 75.51 80.10 85.24 6.30 74.02 80.23 84.57 3.87 88.97 88.62 93.28
(b) Performance (%) comparison: w/o CRF vs w/CRF.
w/CRF 6.36 87.55 85.73 89.36 6.73 7420 7838 8287 6.19 73.06 79.03 82.63 4.16 88.41 87.42 91.98
w/o CRF 6.01 88.26 86.91 90.71 6.56 75.51 80.10 85.24 6.30 74.02 80.23 84.57 3.87 88.97 88.62 93.28
(c) Performance (%) of different fusion strategies.
Union 5.74 87.67 87.28 91.42 7.14 73.03 79.49 8453 6.95 71.66 79.42 8375 4.00 87.33 88.34 93.24
Dynamic fusion algorithm 6.34 87.92 86.16 89.77 6.62 75.22 79.37 84.07 6.16 74.28 80.01 84.21 4.05 88.90 88.12 92.56
Dynamic fusion mechanism 6.01 88.26 8691 90.71 6.56 75.51 80.10 85.24 6.30 74.02 80.23 84.57 3.87 88.97 88.62 93.28
(d) Performance (%) of different versions of CapsNets.
Original CapsNet [12] 5.99 88.08 86.83 90.45 6.53 75.58 79.90 84.73 6.18 74.07 80.22 8433 3.85 88.95 88.54 93.03
TSPOANet [39] 6.04 88.02 86.77 90.47 6.67 75.03 79.66 84.54 6.32 73.72 7994 8424 3.93 88.74 88.45 93.05
BCNet 6.01 88.26 86.91 90.71 6.56 75.51 80.10 85.24 6.30 74.02 80.23 84.57 3.87 88.97 88.62 93.28
(e) Performance (%) of our pseudo labels on different baselines.
TSPOANet-Pseudo 7.33 85.14 8599 89.45 8.5 67.32 7895 81.00 8.53 65.20 77.98 79.50 5.03 84.38 87.41 91.73
CPD-Pseudo 7.61 84.38 86.19 88.23 8.79 68.68 7847 81.24 8.89 66.91 77.77 79.99 5.65 83.76 87.13 90.33
BCNet 6.01 88.26 86.91 90.71 6.56 75.51 80.10 85.24 6.30 74.02 80.23 84.57 3.87 88.97 88.62 93.28
(f) Performance (%) comparison: w/o confidence score vs. w/ confidence score in BCNet.
w/o confidence score 5.96 88.13 86.88 90.45 6.60 75.23 79.78 84.48 6.23 73.95 80.15 84.53 3.88 88.83 88.52 9298
BCNet 6.01 88.26 86.91 90.71 6.56 75.51 80.10 85.24 6.30 74.02 80.23 84.57 3.87 88.97 88.62 93.28
(g) Ablation study for the quality of our pseudo labels. “USPS/UMNet-Pseudo” means using our pseudo labels to train USPS/UMNet.
USPS [10] 6.11 87.00 85.66 8875 6.57 71.98 77.17 80.11 5.70 7251 79.03 8117 4.21 87.45 86.68 90.64
UMNet [11] 6.36 87.74 86.77 89.89 6.67 74.99 80.27 84.48 6.31 73.67 80.47 83.92 4.12 88.41 88.65 92.67
USPS/UMNet-Pseudo 6.15 87.84 86.83 90.01 6.56 75.36 80.47 84.55 6.18 74.02 80.50 84.28 3.89 88.86 88.74 92.99

Fig. 11. Generated labels of w/CRF vs. w/o CRF. With the involvement of CRF, large
background regions with high contrast will be judged as salient regions and object
boundaries with high similarity to the background will be mistaken as background.

labels of USPS [10] (UMNet [11]) significantly®, which is achieved by
Table 1(b) “w/CRF”.

4.3.3. Weeding out mechanism

To understand the contribution of the weeding out mechanism, we
train our model with different 4 under the same setting. Table 2 lists
the performance of different y on four datasets. Specifically, as shown
in Table 2, the performance is improved when y is increasing from 0 to
0.4, and the performance is decreased when y is increasing from 0.4.

5 USPS [10] and UMNet [11] share the same pseudo labels. SBF [7] did
not release their code, which is not involved here.

(b)

Fig. 12. (a) Images; (b) GT; (c) Union fusion strategy; (d) Dynamic fusion algorithm;
(e) Dynamic fusion mechanism. Visual comparison of different fusion strategies. Our
dynamic fusion mechanism successfully coordinates the union fusion strategy and
dynamic fusion algorithm and gets good saliency predictions.

Therefore, it is obvious that out model performs best when x is 0.4.
Inspired by this, u is set to 0.4 in this paper.

4.3.4. Dynamic fusion mechanism

To verify the superiority of the proposed fusion strategy, we com-
pare three versions of fusion, including only union fusion strategy, only
dynamic fusion algorithm, and dynamic fusion mechanism. Table 1(c)
lists the performance of different fusion strategies. It can be obviously
seen that our consistency-aware achieves the best performance with
respect to most of evaluation metrics. Besides, visual comparisons in
Fig. 12 tell that the dynamic fusion strategy surpasses the union fusion
and dynamic fusion algorithm separately with better wholeness and
sharp object boundaries.
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Table 2

Comparison of different u (the number K of images wiped out). The best performance is marked by bold.
H(K) ECSSD [46] DUTS [28] DUT-O [52] HKU-IS [14]

MAE|  F1 ) E, 1 MAE|  F;1 ) E, 1 MAE|  Fy1 ) E, 1 MAE|  Fy1 S, 1 E, 1

0(0) 6.02 88.05 86.71 90.53 6.64 75.16 79.74 84.80 6.38 73.57 79.84 84.20 3.94 88.74 88.39 93.01
0.2(6) 6.08 88.17 86.75 90.50 6.69 75.02 79.70 84.83 6.35 73.81 80.01 84.48 3.92 88.88 88.45 93.14
0.4(20) 6.01 88.26  86.91 90.71  6.56 75.51 80.10 85.24  6.30 74.02 80.23 84.57 3.87 88.97 88.62 93.28
0.5(40) 6.17 88.09 86.56 90.47 6.67 74.91 79.83 84.74 6.33 73.68 79.85 84.37 4.01 88.65 88.35 92.93
0.6(91) 6.33 87.92 86.47 90.30 6.64 75.02 79.69 84.63 6.38 73.32 79.78 83.98 3.97 88.54 88.34 92.95
0.65(146)  6.43 87.78 86.18 89.83 6.57 75.11 79.57 84.37 6.22 73.83 79.93 84.12 4.05 88.33 88.07 92.63
0.7(128) 6.53 87.53 86.56 90.43 6.61 75.08 79.79 84.85 6.32 73.55 79.92 84.26 3.93 88.58 88.43 93.11

Table 3 Img

Dynamic fusion performance (%) of different iterations on ECSSD [46]. The best
performance is marked by bold.

Iteration 0 1 2 3 4 5
MAE | 6.66 6.54 6.42 6.34 6.45 6.38
Fy1 87.53 87.66 87.85 87.92 87.88 87.84
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Fig. 13. Visual comparison of different versions of CapsNets under the same settings.
Our BCNet can better distinguish between background noise and salient objects as well
as predicting complete salient objects.

4.3.5. Iterations in dynamic fusion algorithm

To take a deep insight into the dynamic fusion algorithm, Table 3
lists the performance of different iterations. It can be seen that 3
iterations achieve the best performance with respect to various metrics.
Inspired by this, 3 iterations is used in this paper.

4.3.6. BCNet

To understand the contribution of our BCNet, we compare sev-
eral versions, including original CapsNet [12], two-stream strategy
in TSPOANet [39], and BCNet, under the same settings. Table 1(d)
lists the performance of different versions. It can be seen that BCNet
beats the others on most of datasets. Besides, to probe into the ef-
fectiveness of our BCNet for deep USOD, we use our pseudo labels
to train two existing deep SSOD networks, including TSPOANet [39]
and CPD [57], named TSPOANet-Pseudo and CPD-Pseudo. As shown
in Table 1(e), with our pseudo labels, the advantage of our BCNet over
TSPOANet-Pseudo and CPD-Pseudo demonstrates the superiority of the
architecture of BCNet for deep USOD.

Fig. 13 displays the visual results of BCNet, original CapsNets [12],
and two-stream strategy in TSPOANet [39]. It demonstrates that BCNet
gets better object wholeness and background suppressing, compared
to the original CapsNet and TSPOANet. Besides, Fig. 14 shows visual
examples using the pseudo labels on BCNet, the original CapsNet, and
TSPOANet. Under the same pseudo labels, BCNet detects saliency maps
more close to GT, compared to original CapsNet and TSPOANet.

To discover the importance of the confidence score, we take an
experiment for BCNet with and without the confidence score. Which

== 4
GT

CPD-Pseudo

RIRZE]

TSPOANet-Pseudo

BCNet

A

Fig. 14. Visual comparison of different baselines using our pseudo labels. BCNet can
better cater to those pseudo labels for deep USOD, compared with CPD and TSPOANet.

is list in Table 1(f). It can be found that BCNet with the confidence
score can enhance the performance, which proves the effectiveness of
the confidence score in BCNet. This benefits from that the confidence
score helps to focus more on those informative streams of BCNet when
inferring.

4.3.7. Number of streams

Table 4 lists the performance of different datasets in terms of differ-
ent numbers of streams (from 1 stream to 8 streams) with the fixed total
capsule types. It can be seen that too few or too many streams will drop
the performance, which is because of: (i) unformed part-whole relations
using few capsules in each stream under the circumstance of too many
streams; (ii) noisy part-whole relations using many capsules in each
stream under the circumstance of too few streams. From Table 4, the
optimum number of streams is 4, which is used in this paper.

4.3.8. Parameters

Under the setting of Table 1(d), the parameters of the original
CapsNet [12], TSPOANet [39], and BCNet for the capsule routing are
71.62M, 40.64M, and 18.09M, respectively. It can be seen that our
BCNet reduces the routing parameters significantly, which is owing to
the multi-stream strategy.

4.3.9. The fusion criterion (8) in the dynamic fusion mechanism

To discover the optimal value of # in the dynamic fusion mecha-
nism, we have conducted an ablation experiment for different values
of # to find the optimal value for performance. Table 5 lists the
performance of different values of 6. It can be seen that when 6 = 5/8,
our model performs best. Therefore, we select § as 5/8 in this paper.
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Fig. 15. Visual example of the saliency detection results obtained by our approach and other state-of-the-art methods. MC [45], HS [46] are hand-crafted methods. C2S [29],
MFNet [33], and WSS [31] are weakly-SSOD methods. SBF [7], USPS [10], and UMNet [11] are USOD methods.

Table 4

Comparison of the number of streams (1-8) with the fixed total capsule types. The best performance is marked by bold.
Number of streams  ECSSD [46] DUTS [28] DUT-O [52] HKU-IS [14]

MAE| Fy1t S, 1 E, 1 MAE| Fy1 S, 1 E, 1 MAE| Fy1 S, 1 E, 1 MAE|  Fy1 ) E, 1

1 6.20 87.69 86.39 90.06 6.57 75.33 79.76 84.84 6.31 73.77 79.91 84.35 3.95 88.77 88.38 93.01
2 6.11 87.76  86.59 90.37 6.70 74.85 79.61 84.62  6.46 73.45 79.77 84.12 394 88.63 88.42 93.04
3 6.13 87.93 86.72  90.63 6.67 74.86  79.54 8447 6.39 73.62 79.80 84.18 3.95 88.70  88.39  93.07
4 6.01 88.26 86.91 90.71 6.56 75.51 80.10 85.24 6.30 74.02 80.23 84.57 3.87 88.97 88.62 93.28
5 6.05 88.13 86.89 90.75 6.60 75.43 79.80 8493 6.35 73.73 79.97 8433 394 88.83 88.54 93.17
8 6.04 88.23 86.93 90.68 6.56 75.36 80.12 8517 6.28 73.95  80.21 84.41 3.91 88.80 88.43 9299

Table 5 model. Specifically in Table 6, for the saliency cues refinement, due to

The performance of pseudo labels under different values of 6 in the dynamic fusion
mechanism. The best performance is marked by bold.

0 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
MAE | 4.63 4.63 4.61 4.57 4.53 4.49 4.49 4.49 4.49
Fy1 88.87 8891 88.85 88.87 8890 88.92 8878 8873 88.54
Table 6
Training time (hour) comparison. The most efficient method is marked by bold.
USPS [10] UMNet [11] Ours
Saliency cues refinement 41 41 14
Model training 10 11 2.5

4.3.10. The quality of our pseudo labels

To better prove the quality of our pseudo labels over those of the
previous unsupervised methods, we use our pseudo labels to train the
previous unsupervised models, including USPS [10] and UMNet [11].
It is noted that USPS [10] and UMNet [11] share the same deep
model. Table 1(g) lists the performance comparison of USPS [10]
and UMNet [11] using different pseudo labels. It can be seen from
Table 1(g), the performance using our pseudo labels to train the model
is superior over that of USPS [10] and UMNet [11] on four datasets,
which proves the superior quality of our pseudo labels.

4.3.11. Training time comparison

Due to the fact that our model shares the similar training procedure
with USPS [10] and UMNet [11], including saliency cues refinement
and model training using the results of the saliency cues refinement,
Table 6 lists the training time of USPS [10], UMNet [11], and our

10

the removal of CRF, we achieve 27 h reduced compared to USPS [10]
and UMNet [11]. Besides, using the results of the saliency cues refine-
ment, our model training is efficient when comparing with USPS [10]
and UMNet [11]. In summary, we perform efficiently with respect to
the training time compared with the previous deep USOD methods.

4.4. Comparison with state-of-the-art methods

4.4.1. Quantitative comparison

To demonstrate the superiority of our deep USOD method, we
select 17 SOD methods for comparison, including 3 state-of-the-art
deep USOD methods (SBF [7], USPS [10], and UMNet [11]), 6 deep
SSOD methods (PiCANet [58], CPD [57], BASNet [59], ITSD [60],
MINet [24], TSPOANet [39]), 4 weakly SOD methods (C2S [29],
MWS [30], WSS [31], and MFNet [33]), and 4 hand-crafted SOD
methods (DSR [47], MC [45], RBD [48], HS [46]). Table 7 lists the per-
formance of various methods on five benchmarks. As shown in Table 7,
it can be seen that our method outperforms the state-of-the-art deep
USOD methods (Table 7(d)) and hand-crafted methods (Table 7(c))
on most of evaluation metrics, which verifies the superiority of our
method for deep USOD. Besides, our method beats some of weakly SOD
methods (Table 7(b)), which further demonstrates the power of our
deep method for salient object detection under unsupervision. When
comparing the deep SSOD method, TSPOANet [39], and OURS, we find
that our work is competitive and even better than TSPOANet [39] w.r.t
Fg, Sy and E,, on ECSSD [46], DUT-O [52], and HKU-IS [14], which
demonstrates that our detector achieves competitive performance with
the deep SSOD methods.
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Table 7

Performance (%) of different methods on five benchmarks. The best performance for each group is marked by bold. — represents the authors did not provide the saliency map.
Method ECSSD [46] DUTS [28] DUT-O [52] PASCAL-S [53] HKU-IS [14]

MAE | F,t S,% E,% MAE| F,t S,1 E,1 MAE|F,t S,t E,t MAE|F,t S,t E,1 MAE|F,t S,1 E,1

(a) Fully Supervised
PiCANet [58] 4.64 88.67 91.38 9233 541 7820 86.07 87.24 6.79 72.24 82.64 83.28 7.83 80.02 84.77 86.86 415 87.08 90.54 92.26
CPD [57] 4.02 91.15 91.02 93.77 4.29 8244 86.66 90.20 5.67 73.85 81.77 84.50 7.21 82.30 84.46 88.25 3.32  89.58 90.45 94.24
BASNet [59] 3.70 91.68 91.62 94.32 4.76  82.24 86.56 89.54 5.65 76.68 83.62 86.50 7.58 81.77 83.80 87.86 3.29  90.36 90.77 94.30
ITSD [60] 4.01 91.01 91.42 93.75 4.23 83.23 87.71 90.56 6.32 7524 82.88 85.28 6.81 83.05 85.63 89.15 3.46 89.40 90.68 93.95
MINet [24] 3.62 91.87 91.91 94.32 3.94 83.49 87.49 90.67 569 7404 8218 8458 6.39 83.03 85.45 89.36 3.03 90.55 91.39 94.65
TSPOANet [39] 5.15 88.73 86.84 90.20 4.82 79.91 82.02 87.48 6.38 70.30 76.92 8232 7.49 81.23 81.42 85.08 4.01 87.95 86.56 92.63
(b) Weakly Supervised
C2S [29] 5.93 86.55 88.17 91.19 6.64 73.58 81.75 85.46 7.90 67.43 77.98 81.34 12.81 80.65 78.32 81.80 - - -
MWS [30] 9.64 76.18 8275 79.10 9.12 6478 75.88 74.30 10.87 59.70 75.58 72.85 13.30 66.78 76.75 73.52 837 7351 8179 78.78
WSS [31] 5.90 86.55 86.55 91.11 6.22 74.67 80.34 86.50 6.84 70.15 78.48 83.45 13.99 78.84 7495 79.75 470 85.76 86.49 92.32
MFNet [33] 9.20 82.03 82.29 85.44 8.86 69.02 76.81 80.57 11.37 58.73 71.33 75.42 11.91 73.22 76.72 80.22 6.70 81.85 83.49 87.39
(c) Handcrafted Unsupervised
DSR [47] 17.15 58.19 68.51 65.28 14.78 47.85 65.21 64.04 13.88 50.62 67.28 66.48 26.91 44.35 54.16 51.04 14.22 58.84 69.93 67.32
MC [45] 20.24 53.75 69.24 61.10 19.88 4257 62.46 57.59 18.63 46.78 64.91 60.95 27.15 49.55 61.28 54.13 18.40 52.41 68.38 60.79
RBD [48] 17.14 56.15 68.84 65.39 1531 45.63 64.66 63.60 14.38 50.04 68.15 66.50 24.70 53.08 61.55 58.13 14.24 57.20 70.62 67.40
HS [46] 2275 56.73 68.51 62.03 24.32 4270 60.06 57.60 22.74 47.26 63.26 60.48 28.73 53.15 61.38 55.20 21.50 54.62 67.42 62.17
(d) Deep Unsupervised
SBF [7] 8.80  79.84 8323 85.01 10.69 6270 68.61 71.54 10.76 61.20 7473 76.32 13.09 69.51 75.79 77.77 7.53  80.50 82.91 89.33
USPS [10] 6.11 87.00 85.66 88.75 6.57 71.98 77.17 80.11 5.70 72.51 79.03 81.17 10.54 74.47 76.54 79.47 4.21 87.45 86.68 90.64
UMNet [11] 6.36 87.74 86.77 89.89 6.67 7499 80.27 84.48 6.31 73.67 80.47 83.92 - - - - 412  88.41 88.65 92.67
Ours 6.01 88.26 86.91 90.71 6.56 75.51 80.10 85.24 6.30 74.02 80.23 84.57 10.38 77.18 78.35 82.69 3.87 88.97 88.62 93.28

Img

Fig. 16. Failure cases.

4.4.2. Visual comparison

Visual comparisons of different methods are shown in Fig. 15. For
diverse scenes, including multiple objects (top two rows of Fig. 15),
small object (middle two rows of Fig. 15), and large objects (bottom
two rows of Fig. 15), our work obtains better object wholeness and ac-
curacy, compared to the other methods. This benefits from the proposed
high-quality pseudo labels and the powerful BCNet.

4.5. Failure cases

Fig. 16 displays some failure cases for our model. From the left two
columns of Fig. 16, our model endowed by CapsNets can segment the
objects, but cannot parse the image accurately. From the right two
columns of Fig. 16, our model cannot segment the accurate object
wholeness under the circumstance of complicated foreground and back-
ground. In the future, some cutting-edge techniques, e.g., region-object
relations [61] and spatial granularity [62], will be adopted to improve
the robustness and feasibility of our method to various scenes.

5. Conclusion

In this paper, we have introduced the property of part-whole re-
lations in the task of deep USOD with the designation of BCNet.
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Part-whole relations come from the routing process of CapsNets. How-
ever, the complex routing process of the previous CapsNets limits its
widespread application for the large-scale dense prediction of salient
objects. To enhance the ability of CapsNets for the segmentations of
salient objects, in this paper, we have embedded two components
in CapsNets. First, a multi-stream strategy with few capsules in each
stream was utilized to ensure a sparse routing, which helped to re-
duce the complexity and noisy capsule assignments. Secondly, a con-
fidence score has been computed for each stream to highlight those
important streams while suppressing those confusing streams, which
ensured using those primitive streams of capsule features to infer
saliency. Besides, a consistency-aware dynamic fusion mechanism has
been proposed to generate pseudo labels from hand-crafted salient
object detectors. Various experiments have verified the superiority, and
efficient ablation experiments have been studied to understand the
proposed method. In the future, we will improve our work by involving
other deep learning techniques, e.g., hierarchical architecture [63], con-
trastive learning [64], transformer [65], SAM [66], SegGPT [67], diffu-
sion [68], region-object relations [61] and spatial granularity [62], etc.
Besides, we will attempt to apply our method to some real applications,
such as visual localization [69], medical image segmentation [70],
video object detection [71], remote scene [72] and urban scene [73],
etc.
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