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Deep Salient Object Detection With Contextual
Information Guidance

Yi Liu, Jungong Han , Qiang Zhang , and Caifeng Shan , Senior Member, IEEE

Abstract— Integration of multi-level contextual information,
such as feature maps and side outputs, is crucial for Con-
volutional Neural Networks (CNNs)-based salient object detec-
tion. However, most existing methods either simply concatenate
multi-level feature maps or calculate element-wise addition of
multi-level side outputs, thus failing to take full advantages
of them. In this paper, we propose a new strategy for guid-
ing multi-level contextual information integration, where fea-
ture maps and side outputs across layers are fully engaged.
Specifically, shallower-level feature maps are guided by the
deeper-level side outputs to learn more accurate properties of
the salient object. In turn, the deeper-level side outputs can
be propagated to high-resolution versions with spatial details
complemented by means of shallower-level feature maps. More-
over, a group convolution module is proposed with the aim to
achieve high-discriminative feature maps, in which the backbone
feature maps are divided into a number of groups and then the
convolution is applied to the channels of backbone feature maps
within each group. Eventually, the group convolution module
is incorporated in the guidance module to further promote the
guidance role. Experiments on three public benchmark datasets
verify the effectiveness and superiority of the proposed method
over the state-of-the-art methods.

Index Terms— Salient object detection, convolutional neural
networks (CNNs), group convolution, multi-level contextual infor-
mation integration.

I. INTRODUCTION

HUMAN beings possess the innate ability of identifying
the most attractive regions or objects in an image. Salient

object detection aims to imitate this ability by automatically
identifying and segmenting the most attractive objects in an
image. Due to its potential to improve computational effi-
ciency, salient object detection has been studied for decades
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Fig. 1. Illustrations of different manners for integrating multi-level contextual
information, where color cuboids represent feature maps and grey cuboids
represent side outputs. Different-size cuboids represent different-level feature
maps/side outputs. It is noted that some basic operations are omitted for
clarity, such as deconvolution. (a) Multi-level feature maps are integrated
through concatenation. (b) Multi-level side outputs are integrated through
element-wise addition. (c) The proposed multi-level contextual information
integration jointly employs feature maps and side outputs. Specifically, the side
output of deeper-level (i), used as a guidance feature map, is concatenated
with the feature maps of shallower-level (i − 1). Due to the fact that side
outputs have coarsely predicted the salient object, deeper-level side outputs
can provide a guidance for shallower-level feature maps to learn more accurate
properties of the salient object. In turn, deeper-level side outputs can be
propagated to their high-resolution versions with spatial details complemented
by means of shallower-level feature maps.

in various vision tasks, including segmentation [1], [2], image
fusion [3], image retrieval [4], object recognition [5], etc.

Earlier methods [6]–[14] for salient object detection mostly
employed primitive hand-crafted features; their performance
is reasonable but far from satisfactory in complex scenes.
Recently, deep convolutional neural networks (CNNs), thanks
to their powerful feature representation abilities, have been
successfully applied for salient object detection [15]–[33].
CNNs are composed of a cascade of repeated convolutional
layers, where deeper layers encode high-level semantic knowl-
edge while shallower layers preserve fine details. On top of
that, there are rich contextual information across multiple
network layers. Lately, such multi-level contextual informa-
tion is incorporated in the CNNs [15], [16], [19], [29], [34]
to further improve the performance of salient object detec-
tion. Most of these methods either integrate multi-level
feature maps [16], [29], [34] via concatenation (as shown
in Fig. 1(a)) or integrate multi-level side outputs (i.e., saliency
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Fig. 2. Illustrations for existing salient object detection methods by
employing multi-level contextual information integration. (a) Images; (b) GT;
(c) NLDF [16]; (d) DCL [19]; (e) Amulet [15]; (f) Proposed method.

predictions) [19] through element-wise addition (as shown
in Fig. 1(b)). On one hand, multi-level feature maps can rep-
resent an image at different scales, which potentially provide
multi-resolution saliency cues. For instance, shallower-level
feature maps (high-resolution saliency cues) have small recep-
tive fields and thus can help capture the local saliency.
In the meanwhile, deeper-level feature maps (low-resolution
saliency cues) with larger receptive fields enable to capture
the complementarily global saliency. On the other hand,
multi-level side outputs can provide saliency predictions at
different scales, where i) deeper side outputs encode high-level
semantic knowledge and thus can better locate salient objects,
and ii) shallower side outputs are prone to capture rich
spatial information such as object boundaries. In view of the
above discussion, appropriate integration of multi-level side
outputs can potentially improve the performance of saliency
detection.

However, the current integration strategies, which fuse the
feature maps or the side outputs, are still in the mire of
two major limitations. Firstly, some feature maps may be
too cluttered, which is likely to mislead the integration of
multi-level feature maps. As illustrated in Fig. 2, the Non-
Local Deep Feature (NLDF) model [16], which achieves the
contrast features by subtracting the average features simply
obtained via average pooling, cannot identify the salient
parts similar to the background. Secondly, when multi-level
side outputs miss some parts of the salient objects, it is
no longer possible to make up them again by integrating
these side outputs only, as illustrated in the fourth column of
Fig. 2.

Differently, the aggregating multi-level convolutional
feature framework (named Amulet) [15] considers both the
feature maps and side outputs for multi-level contextual infor-
mation integration in the Resolution-based Feature Combina-
tion (RFC) module and the Saliency Map Prediction (SMP)
module. Concretely, multi-resolution feature maps are inte-
grated into each resolution in RFC while shallower-level fea-
ture maps and deeper-level predictions are jointly considered
by a weighted summation of them, which turns out to be better
than the previous separate manner for information integration.

Quite evidently, as displayed in the first two rows of Fig. 2,
Amulet [15] achieves better detection results than NLDF [16]
and the Deep Contrast Learning (DCL) model [19] that com-
bines multi-level side outputs for saliency prediction. However,
we argue that this simple weighted summation in SMP of
Amulet [15] does not efficiently explore the complementarity
of these two types of information. As a result, some undesired
detection results will occasionally arise. For instance, in Fig. 2,
a part of backgrounds are mistakenly labeled as the salient
object by Amulet [15]. Furthermore, as shown in the last two
rows of Fig. 2, it is hard to distinguish small salient objects
from complex backgrounds by Amulet [15].

Alternatively, in this paper, we propose a novel guidance
strategy to integrate multi-level contextual information by
jointly employing feature maps and side outputs (as illustrated
in Fig. 1(c)). The underlying idea behind is based on the
observation that multi-level side outputs provide saliency pre-
dictions under multi-scale receptive fields, where deeper-level
side outputs, corresponding to the large receptive fields,
encode high-level semantics and thus can be used to coarsely
localize the salient object. Therefore, it is reasonable that we
use the deeper-level side outputs to guide the shallower-level
feature maps through concatenation. By doing so it can bring
benefits to both parties - shallower-level feature maps can
learn the properties of salient objects more accurately given
the coarse saliency predictions from deeper-level side outputs;
with the aid of a large number of saliency cues provided by
shallower-level feature maps, deeper-level side outputs can be
propagated into their high-resolution versions with fine details
complemented.

Additionally, existing CNN-based salient object detection
methods derive the discriminative feature maps by means of
the Traditional Convolution Module (TCM), which performs
convolutions on all the Backbone Feature Maps (BFMs).1

This usually ends up producing a lot of BFMs for each
level. The downside is that there is a high chance that salient
features are drowned amongst the trivial BFMs, thus making
themselves difficult to be distinguished from the background.
One example can be found from Fig. 3(a), in which feature
maps obtained by TCM are not discriminative enough to
highlight the salient object. To tackle this problem, in this
paper, we introduce a Group Convolutional Module (GCM)
that divides BFMs into groups such that the convolutions can
be carried out on the BFMs within each group. By doing that,
a number of discriminative feature maps are derived, which are
finally concatenated together. The intention of using GCM is
to generate fewer trivial feature maps within each group such
that the salient features can be well identified, which addresses
the drawback of TCM. As illustrated in Fig. 3(b), the GCM
indeed produces the feature maps that can better distinguish
the salient object.

Moreover, we embed the GCM into the proposed multi-level
context guidance strategy to further promote the guidance
role of deeper-level side outputs. Specifically, the shallower-
level feature maps are first divided into a series of groups.

1In this paper, the feature maps of the backbone network are called as the
Backbone Feature Maps (BFMs).
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Fig. 3. TCM vs GCM. For a given image (shown in the top row), all the
discriminative feature maps (128) of the shallowest layer obtained by TCM
and GCM are shown here. It can be observed that the feature maps obtained
by TCM are mostly trivial and thus not much discriminative to distinguish
the salient object from the background. In contrast, the feature map obtained
by GCM are more discriminative. Especially, the feature maps marked by a
red box can easily predict the salient object based on the softmax function.

Then, the deeper-level side output performs its guidance
within each group, e.g., the deeper-level side output is used
as a guidance feature map to be concatenated with several
shallower-level feature maps within each group. Extensive
experiments demonstrate the superiority of our proposal when
compared to the state-of-the-art methods.

The main contributions of this paper are summarized as
follows:

(1) A novel guidance strategy is proposed to integrate
multi-level contextual information by jointly employing fea-
ture maps and side outputs, making full use of multi-level
saliency cues and multi-level saliency predictions. As a depar-
ture from prior saliency detectors using contextual informa-
tion, our strategy allows feature maps and side outputs to
engage with each other during the integration of multi-level
contextual information.

(2) A Group Convolutional Module (GCM) is proposed to
produce more discriminative feature maps, which potentially
increase the accuracy in identifying the salient object.

(3) Furthermore, the GCM is appropriately embedded into
the guidance strategy to design a Group Guidance Module
(GGM), which further enhances the guidance role.

The rest of this paper is organized as follows: Section II
reviews related works; Section III illustrates the proposed deep
salient object detection network in detail; Section IV conducts
experiments to verify the effectiveness and superiority of the
proposed method over the state-of-the-art methods; Section V
concludes this paper.

II. RELATED WORK

In this section, we review the related works from three
aspects. We start with a comprehensive discussion on salient
object detection. Afterwards, the related semantic segmenta-
tion works that involve multi-level feature integration will be
introduced. Last, we discuss the guidance idea used in other
computer vision applications.

A. Salient Object Detection

Earlier salient object detection methods mainly compute
saliency based on hand-crafted features [7]–[14], [35]–[39].
Readers can refer to [6] for a comprehensive review on
these methods. In recent years, CNNs have been success-
fully applied for saliency detection and have achieved sub-
stantial improvements due to their powerful representation
ability [15]–[33], [40]–[42]. Many CNN-based works attempt
to learn deep semantic properties of salient objects for further
performance improvements. For example, Li et al. [22] learnt
multi-scale deep features by CNNs for high-quality visual
saliency. Li et al. [25] improved the perceptional saliency
detection by designing a multi-task deep neural network to
learn deep features for two correlated tasks, including saliency
detection and semantic image segmentation. Hu et al. [26]
proposed a deep neural network to learn a Level Set func-
tion for salient objects, which could produce more accurate
boundaries and compact saliency. In addition, a superpixel-
based guided layer was constructed to recover full-resolution
saliency maps. Zhang et al. [27] proposed to learn deep
uncertain convolutional features with a reformulated dropout
to construct an uncertain ensemble of internal feature units
in specific convolutional layers, thus improving the robustness
and accuracy of saliency detection. Then, a unified deep neural
network was designed for the uncertain feature extraction
and saliency detection. While high-level features extracted by
CNNs are good to evaluate objectness in an image, they are
usually too weak to determine the precise localization. To rem-
edy this problem, Lee et al. [23] jointly employed hand-crafted
features and deep features via a unified framework to evaluate
the saliency.

Apart from the deep semantics, an appropriate scope of
context is another important property for salient objects.
Specifically, (i) global context can extract the object saliency
in a full image; and (ii) local context can better detect the local
saliency in the meticulous areas. Therefore, integrating global
context and local context will produce more accurate and
comprehensive salient objects. Zhao et al. [21] applied deep
CNNs for saliency detection, which was achieved by extracting
global context in a full image and local context in meticulous
areas to capture the object saliency. Wang et al. [24] designed
two deep networks for firstly estimating the local saliency and
subsequently searching the global saliency of a set of salient
object regions, which were weighted summed to construct the
final saliency map. From the view of global to local and coarse
to fine, Liu and Han [20] proposed a deep hierarchical network
to firstly achieve a coarse global saliency prediction and then
hierarchically and progressively refine the details of saliency
maps by integrating local context information.
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These methods tried to extract more perceptual-context
saliency cues for salient object detection. However, they
ignored the complementarities of the multi-level contextual
information, which were provided by several stages of deep
features produced by standard CNNs. Therefore, their perfor-
mance is still far from satisfactory. Motivated by this, many
CNNs based salient object detection methods [15], [16], [19]
attempt to integrate hierarchical contextual information. Our
work is most related to these methods, which will be elabo-
rated below.

Many CNNs based works have found that i) deeper-level
features extract high-level semantic knowledge and thus can
help locate the salient objects; ii) shallower-level features
capture low-level spatial details that can be used to detect
the object boundaries. Based on these perceptual studies, a lot
of works have attempted to integrate multi-level contextual
information for salient object detection. Zhang et al. [15]
proposed a RFC module for aggregating the multi-level fea-
ture maps into each resolution. Thus, high-level semantic
knowledge and low-level spatial details are simultaneously
combined at each resolution. Besides, a SMP module was
further designed to consider the feature maps and prediction
by a simple weighted summation. Luo et al. [16] adopted a
step-wise unsampling procedure to upsample the deeper-level
feature maps by a factor of 2, which were then concatenated
with the shallower-level feature maps. Such an operation was
performed layer-by-layer until the shallowest layer. In such
way, deep-level feature maps will be gradually transformed
into high resolution with the refinement of the shallow-level
ones. Li and Yu [19] proposed an end-to-end network con-
sisting of a pixel-level fully convolutional stream, which com-
bined multi-level saliency predictions to produce a pixel-level
saliency map, and a segment-wise spatial pooling stream.
Eventually, a superpixel-level saliency map could be generated
by performing spatial pooling and saliency estimation over
superpixels.

B. Semantic Segmentation

Semantic segmentation is generally considered as a
pixel-wise classification problem, in which each pixel is
assigned with an object category label. Ronneberger et al. [43]
proposed a U-Net architecture for the biomedical image
segmentation, where the outputs from low resolution fea-
tures were combined with high resolution ones for more
accurate localization. Badrinarayanan et al. [44] designed
a SegNet by constructing a hierarchy of decoders corre-
sponding to each encoder for exploring different-scale infor-
mation. Chen et al. [45] proposed DeepLabv1 for image
segmentation by integrating the hole algorithm and fully
connected Conditional Random Fields (CRFs) in the deep
CNN. In [46], they further developed DeepLabv2 by inte-
grating an Atrous Spatial Pyramid Pooling (ASPP) into
DeepLabv1 for the sake of accurate object segmentation at
multiple scales. In [47], DeepLabv3 was presented, which
augmented ASPP with image-level features to capture the
global context. DeepLabv3+ [48] was a further extension of
DeepLabv3 in the sense that a decoder module was added
into the framework to refine the object boundaries. In general,

most sematic segmentation methods directly use the BFMs for
further prediction. Differently, we perform GCM on BFMs to
produce high-discriminative features for more accurate pre-
dictions. Besides, these methods mostly perform information
integration via combining multi-layer features. In contrast,
we apply the deeper-layer prediction to guide the shallower
layer features extraction for more accurate salient properties,
where the accurate location of deep prediction and the rich
spatial details from shallow features will be comprehensively
integrated.

C. Guidance Strategy Usage in Computer Vision

Various strategies have been adopted to guide feature inte-
gration in different computer vision applications [49]–[55].
Wang et al. [49] proposed to capture the motion structure
across time for the video inpainting by learning the temporal
structure guidance, which could improve the temporal smooth-
ness and the context consistency. A 2D Encoder-Decoder
architecture was further adopted to recover the spatial details.
Ren et al. [50] designed a cross-modal method by unifying
both visual and auditory modalities to enhance the robust-
ness against distractors. Wang et al. [51] made use of the
motions within a video to distinguish different parts and
thus extracted more accurate foreground appearance in a
video. Sam et al. [52] constructed a top-down structure to use
high-level feature maps as high-level scene context informa-
tion to correct false density predictions of the crowd counting
CNN. Pinheiro et al. [53] first produced multiple channels of
coarse mask for the objects in an image, and then refined it
with low-level spatial details that were reduced-dimensional
feature maps. Shrivastava et al. [54] integrated higher and
lower features by a top-down structure, which learned what
semantic or context information to be preserved in the
top-down feature transmission as well as the selection of
relevant low-level features. Basically, the above works either
apply different-modal information to construct cross-modal
information integration [49]–[51] or adopt a top-down struc-
ture to combine high-level semantics with low-level spatial
details in the form of feature maps [52]–[54]. Differently,
we introduce a novel guidance strategy into the top-down
structure for multi-level context information integration by
jointly employing the prediction and feature maps. Specifi-
cally, the deeper-level predictions acts like a guidance feature
map to guide the shallower-level features via concatenation.
The deeper-level prediction promotes shallower layers to learn
more accurate salient properties. GCM is further embedded
to essentially promote the guidance role of the deeper level
prediction.

III. PROPOSED SALIENT OBJECT DETECTION NETWORK

The framework of the proposed salient object detection
network is shown in Fig. 4, where the backbone network (i.e.,
VGG16 [56]) firstly learns 5-level feature maps. GCM is then
proposed to produce high-discriminative feature maps. Next,
the guidance strategy is designed for multi-level contextual
information integration. The final saliency map is computed
by jointly employing those feature maps obtained by GGM,
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Fig. 4. The framework of the proposed salient object detection network. It is noted that some basic operations are omitted for clarity, such as convolution
and deconvolution. The top row shows the backbone network (i.e., VGG16), which generates 5-level Backbone Feature Maps (BFMs). The second row is the
GCM, which aims to achieve high-discriminative feature maps from BFMs. The third row illustrates GGM, which produces the Guided Feature Maps (GFMs).
“Prediction-i” and “Output-i” represent the saliency predictions/side outputs obtained by GGM and GCM, respectively. GGM-4 is taken as an example for
the description of the proposed guidance strategy. “GGM-4” takes the feature maps obtained by GCM-4 and “Prediction-5” as inputs. The deeper-level side
output, i.e., “Prediction-5”, is used as a guidance feature map to guide the shallower-level feature maps obtained by “GCM-4” through concatenation.

GCM, and the backbone network. The framework will be
discussed in detail in the following.

A. Backbone Network

Following the previous works [15], [16], [19], [23], [25],
VGG16 network [56] is chosen as the backbone network in
this paper. Considering VGG16 is originally proposed for
image classification [56], we modify it to serve our purpose.
Firstly, the last three fully connected networks of VGG16 [56]
are removed. Secondly, the input image is cropped to 352×352
instead of 242 × 242 for keeping more image details. The
output of the proposed network is 176×176, which is resized
to 352 × 352 pixels with a bilinear interpolation. Different
layers learn different levels of convolutional feature maps,
i.e., Conv-1, Conv-2, Conv-3, Conv-4, and Conv-5 in our
study, which are denoted as

{
Fi

}
(i = 1, 2, 3, 4, 5). These

feature maps are called Backbone Feature Maps (BFMs).
Level-i has Di -channel feature maps, which are denoted as{
Fi

} =
{

Fi
j

} (
j = 1, 2, . . . , Di

)
. Table. I shows the details of

the backbone network.

B. Group Convolution Module (GCM) for Discriminative
Feature Maps

Most existing CNNs-based methods obtain discriminative
feature maps by the Traditional Convolution Module (TCM),
which performs convolutions across all the channels of the
BFMs. However, the salient features may be drowned amongst
the BFMs. This will lead to that the feature maps are not
discriminative enough to distinguish the salient object from

TABLE I

DETAILS OF THE BACKBONE NETWORK

the complicated background (as illustrated in Fig. 3(a)).
To address this, we propose a Group Convolution Mod-
ule (GCM) as described below.

Step 1: Split BFMs into numerous groups. The BFMs
of each level (except level-1), i.e.,

{
Fi

}
(i = 2, 3, 4, 5),

are first empirically split into 128 non-overlapped
groups

{
Gi

j

}
( j = 1, 2, . . . , 128). Each group consists

of several BFMs, i.e., Gi
1 =

(
Fi

1, . . . , Fi
gi

)
, Gi

2 =(
Fi

gi+1
, . . . , Fi

2∗gi

)
, . . ., Gi

128 =
(

Fi
127∗gi+1

, . . . , Fi
128∗gi

)
,

where gi = Di

128 is the number of BFMs within each group at
level-i . It is noted that

{
F1

}
is divided into 64 groups, each

of which consists of 1 BFM.
Step 2: Generate discriminative feature maps within each

group. Convolutions are performed across all the channels of
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TABLE II

DETAILS OF THE PROPOSED GCM. COLUMN 2: INPUT OF THE CORRESPONDING BLOCK; COLUMN 3 TO COLUMN 8: DETAILS
OF EACH GROUP AT EACH LEVEL; COLUMN 9: CONCATENATION OF OUTPUTS OF ALL THE GROUPS

Fig. 5. Illustrations of the proposed GCM by taking GCM-4 as an example.
The 512-channel BFMs of Conv-4 are first empirically divided into 128 non-
overlapped groups, each of which consists of 512/128 = 4 channels of BFMs.
Then, a convolution with the kernel of 3×3 is performed across the 4-channel
BFMs within each group to derive a discriminative feature map for each group.
In such way, 128 non-overlapped groups will produce 128 discriminative
feature maps, which are concatenated to form the 128-channel feature maps
Group-Conv-4.

the BFMs within each group, i.e.,

Ai
j = Conv(Gi

j , d), (1)

where Conv denotes the convolution operation and d is the
channel number of the output feature maps. Eq. (1) will obtain
d-channel discriminative feature maps. In this paper, d is set to
1 for level-2, level-3, level-4, level-5, and 2 for level-1. In this
way, there will be 128 channels of discriminative feature maps
for each level.

Step 3: Concatenate all the discriminative feature maps.
These feature maps are concatenated together at each level,
i.e.,

Ai = Concat ({Ai
j}){ j = 1, 2, . . . , 128}, (2)

where Concat denotes the concatenation operation. Thus,
we achieve 128 discriminative feature maps for level-i .
Table. II illustrates the details of the proposed GCM.

To be more specific, Fig. 5 takes GCM-4 as an example
to illustrate the proposed GCM. 512-channel BFMs of Conv-
4 are first split into 128 groups, each of which consists of 4
channels of BFMs. Then, as in Eq. (1), a convolution with
the kernel of 3 × 3 is performed across the 4-channel BFMs
within each group to achieve 1 discriminative feature map.
In this way, 128 discriminative feature maps will be obtained
from 128 non-overlapped groups. Finally, these individual
feature maps are concatenated by Eq. (2) to obtain 128-channel
feature maps A4, i.e., Group-Conv-4. Similarly, Group-Conv5,

Group-Conv3, and Group-Conv-2 will be obtained by the
proposed GCM from Conv-5, Conv-3, and Conv-2, respec-
tively. When computing Group-Conv-1, 2 convolutions with
kernels of 3 × 3 are performed within each group to achieve
2 discriminative feature maps for each group. Following this,
64 groups will produce 128 discriminative feature maps, which
are then concatenated to obtain 128-channel feature maps, i.e.,
Group-Conv-1.

The proposed GCM carries out the convolution operation
across several channels of BFMs within each group, rather
than all the channels of BFMs, as adopted by TCM. For
TCM, the salient features must be protruded out from a large
number of feature maps. This may be difficult because the
salient features can be easily drown amongst feature maps.
On the contrary, the salient features can be easily protruded out
from several feature maps within each group in the proposed
GCM. As shown in Fig. 3, the feature maps computed by our
proposed GCM are more discriminative than those obtained
by TCM.

From the perspective of elements involved in the convo-
lution, our proposed GCM clearly differs from the partial
convolution [57]. The partial convolution [57] introduces a
binary mask into the standard convolution operation, where
only those pixels masked by 1 are counted in the convolution.
While our proposed GCM divides all the channels of feature
maps into a few groups along the channel dimension, on each
of which the convolution is implemented. Different from the
partial convolution [57] that just leverages parts of the input
features, GCM comprehensively explores all the input features
to obtain more distinctive information.

C. Guidance Strategy for Integration of Multi-Level
Contextual Information

As pointed out previously [15], [16], [19], deep layers are
prone to extract semantic knowledge for localizing the salient
objects, while shallow layers tend to preserve low-level spa-
tial details that can better detect object boundaries. Here,
we propose a novel guidance strategy to jointly employ feature
maps and side outputs for integration of multi-level contextual
information.

1) Direct Guidance Module (DGM): Given saliency infer-
ence, the side outputs provide coarse saliency predictions,
which indicate the locations of the salient object and back-
ground at a coarse level. Suppose we use the side output
of level-i to guide the feature maps of level-(i − 1) through
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Fig. 6. Illustrations of the proposed DGM by taking Guide-Conv-4 as an
example. The deeper-level side output, i.e., Prediction-5, is first upsampled
by a deconvolution with the stride of 2 into the same resolution with the
shallower-level feature maps, i.e., Group-Conv-4, and then is concatenated
with 128-channel feature maps of Group-Conv-4, resulting in 129-channel
feature maps. Finally, a convolution with the kernel of 3 × 3 is performed
on these 129-channel feature maps to achieve 128-channel feature maps,
i.e., Guide-Conv-4.

concatenation. Here, the side outputs are denoted as Oi ={
Oi

f g, Oi
bg

}
(i = 1, 2, 3, 4, 5), where Oi

f g denotes the fore-

ground probability and Oi
bg denotes the background probabil-

ity. Usually, we employ the deeper-level foreground probabil-
ity, e.g., Oi

f g , to guide the generation of shallower-level feature
maps. Specifically, if the foreground probability of Oi

f g at the
i th level is represented as the prediction Pi , the Guided Feature
Maps (GFMs) of level-i (i.e., Guided-Conv-i , i = 1, 2, 3, 4)
can be achieved by the following steps.

Step 1: Concatenate the deeper-level prediction with the
shallower-level feature maps.

ConDi = Concat (Pi+1, Ai ) (i = 1, 2, 3, 4). (3)

Step 2: Perform convolutions on the concatenated feature
maps.

guiAi = Conv(ConDi ) (i = 1, 2, 3, 4). (4)

guiAi is the expected GFMs of level-i .
In this guidance strategy, the deeper-level side output is used

to directly guide the shallower-level feature maps, which we
call Direct Guidance Module (DGM).

Fig. 6 shows an example of the DGM by taking
Guide-Conv-4 as an example. The deeper-level side out-
put, i.e., Prediction-5, is first upsampled by a deconvolu-
tion with the stride of 2 into the same resolution with the
shallower-level feature maps, i.e., Group-Conv-4, and then
is concatenated with 128-channel feature maps of Group-
Conv-4, resulting in 129-channel feature maps. Finally, a con-
volution with the kernel of 3 × 3 is performed on these
129-channel feature maps to achieve 128-channel GFMs,
i.e., Guide-Conv-4, which are processed subsequently for
saliency prediction, i.e, Prediction-4. Following this way,
Group-Conv-3, Group-Conv-2, and Group-Conv-1 are succes-
sively guided by Prediction-4, Prediction-3, and Prediction-2,
respectively.

2) Group Guidance Module (GGM): Considering the effec-
tiveness of the GCM, we propose to embed it into the
proposed baseline of guidance strategy, i.e., DGM, to further
promote the guidance role. We call this Group Guidance
Module (GGM), which is illustrated in Algorithm 1. guiAi

in Algorithm 1 is the expected GFMs of level-i .

Algorithm 1 Group Guidance Module (GGM)

Fig. 7. Illustrations of the GGM by taking Guide-Conv-4 as an example.
The 128-channel feature maps of Group-Conv-4 are first empirically split into
32 non-overlapped groups, each of which consists of 4-channel feature maps.
Then, the deeper-level side output, i.e., Prediction-5, is used as a guidance
feature map to be concatenated with the 4-channel feature maps within each
group to achieve 5-channel feature maps for each group. A convolution with
the kernel of 3 × 3 is performed on the 5-channel feature maps within each
group to achieve 4-channel feature maps for each group. Following this way,
we will achieve 32 4-channel feature maps. These feature maps are finally
concatenated together to obtain Guide-Conv-4.

Fig. 7 shows an example for GGM by taking Guide-Conv-
4 as an example. The 128-channel feature maps of Group-
Conv-4 are first split into 32 groups, each of which consists
of 4-channel feature maps. Then, the deeper-level side output,
i.e., Prediction-5, is used as a guidance feature map to be
concatenated with the 4-channel feature maps within each
group to achieve 5-channel feature maps for each group.
A convolution with the kernel of 3 × 3 is performed on the
5-channel feature maps within each group to achieve 4-channel
GFMs for each group. In this way, we will derive 32 4-channel
GFMs. These GFMs are finally concatenated together to
obtain Guide-Conv-4, which is further processed for saliency
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TABLE III

DETAILS OF THE PROPOSED GGM. COLUMN 2: INPUTS OF THE CORRESPONDING BLOCKS; COLUMN 3 TO COLUMN 8: DETAILS OF EACH GROUP AT
EACH LEVEL; COLUMN 9: CONCATENATION OF OUTPUTS OF ALL THE GROUPS. TO AVOID OVER-FITTING, A Dropout LAYER IS ADDED AFTER

THE “CONCAT” LAYER WITHIN THE BLOCKS OF “GUIDE-CONV-1”, “GUIDE-CONV-2”, “GUIDE-CONV-3”,
AND “GUIDE-CONV-4”, WHICH ARE NOT DISPLAYED IN TABLE

prediction, i.e., Prediction-4. Similarly, Guide-Conv-3, Guide-
Conv-2, and Guide-Conv1 are successively guided by
Prediction-4, Prediction-3, and Prediction-2, respectively.

For DGM, the guidance role of the deeper-level side output
could be weak because it can be easily submerged in a flood of
shallower-level feature maps. Differently, GGM has a stronger
guidance role for the deeper-level prediction due to the embed-
ding of GCM, which is helpful for promoting the guidance role
of the deeper-level prediction within each group. In view of
the above discussion, GGM is chosen as the guidance strategy
in this paper. Table. III presents the details of the proposed
GGM. To avoid over-fitting, a dropout layer is added after the
“Concat” layer within the blocks of “Guide-Conv-1”, “Guide-
Conv-2”, “Guide-Conv-3”, and “Guide-Conv-4”, which is not
displayed in Table. III for clarity.

Our proposed GGM differs from the SMP module [15] in
two aspects. First, SMP in Amulet [15] achieves the level-i
prediction by performing a deconvolution and a convolution
on the level-i feature maps and level-(i +1) prediction, respec-
tively, and then adding them up. In contrast, our proposed
GGM exploits the level-(i +1) prediction as a guidance feature
map to guide the level-i feature maps via the concatena-
tion operation. Since the deeper-level prediction can coarsely
locate the salient object, our guidance strategy can help the
shallower-level feature maps learn more accurate properties
of the salient object. As well, with the aid of fine details
provided by the shallower-level feature maps, the proposed
guidance strategy enables the deeper-level prediction to be
well propagated into their high-resolution versions. Further-
more, instead of simply concatenating the feature maps and
prediction, we embed the proposed GCM in the guidance
strategy, which promotes the guidance role of the deeper-level
prediction. Secondly, in view of the fact that the desired
saliency map is essentially the foreground prediction, it is
better to use only the foreground prediction to guide the
feature maps, which is applied in our proposed GGM module.
However, SMP in Amulet [15] combines both the foreground
prediction and background prediction with the feature maps,

which may lead to some noises due to the involvement of
the background prediction. To sum up, compared with SMP
in Amulet [15], our proposed GGM can better explore the
complementarity of feature maps and prediction.

3) Analysis of the Contextual Information Guidance Strat-
egy: We analyze the propagation formulations behind the
contextual information guidance strategy based on DGM.

Eq. (4) is rewritten as

xgui
i = Conv

(
Concat

(
Pi+1, xi

))
, (9)

where xgui
i and xi represent the input of DGM at level-i and

the output of GCM at level-i , respectively.
Denoting the loss function as ε, from the chain rule of

backpropagation [58], we have

∂ε

∂xi
= ∂ε

∂xgui
i

∂xgui
i

∂xi

= ∂ε

∂xgui
i

(
∂Conv (xi)

∂xi
+ ∂Pi+1

∂xi

)
. (10)

Eq. (10) indicates that the gradient ∂ε
∂xi

exhibits some

favorable properties. (i) ∂ε

∂xgui
i

∂Conv(xi )
∂xi

propagates information

directly at the current level-i without concerning any other
stages of deep features. (ii) ∂ε

∂xgui
i

∂Pi+1

∂xi
propagates information

through the deeper prediction of level-(i + 1), which ensures
the guidance of deeper-level prediction for the shallower-level
feature maps. Additionally, the second term avoids the loss of
semantic knowledge to some extent as well.

D. Saliency Inference

In this section, we introduce how to produce the saliency
map based on the proposed GCM and GGM.

Supposing we have three deeper-level side outputs generated
by GCM and two shallower-level predictions produced by
GGM, where the former three are denoted as X3

gcm , X4
gcm ,
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X5
gcm , and the latter two are denoted as X1

gui , X2
gui , these 5 side

outputs are added together to produce the final saliency map.
To better recover the spatial details, a series of deconvolutional
layers with kernels of 5 × 5 and strides of 2 are performed
on the low-resolution side outputs to achieve high-resolution
versions.

In addition, “Conv-5” can well capture the global context.
Therefore, we also add the side output of “Conv-5” to the
final saliency map, denoted as Xglo. Similar to [16], three
convolutional layers are added after “Conv-5” to achieve the
global context. One more convolution is further added to
obtain the global context output.

The final saliency map is computed as a linear combination
of X1

gui , X2
gui , X3

gcm , X4
gcm , X5

gcm , and Xglo using 6 lin-
ear operators

(
Wgui1, bgui1

)
,
(
Wgui2 , bgui2

)
,
(
Wgcm3, bgcm3

)
,(

Wgcm4 , bgcm4
)
,
(
Wgcm5, bgcm5

)
, and

(
Wglo, bglo

)
, where W∗

and b∗ represent the parameters of weights and biases. The
softmax function is used to compute the probability for each
pixel of being salient or not, i.e.,

ŷ(vi ) = p (y(vi) = c) = e�(vi )∑
c�∈{0,1} eZ(vi )

, (11)

where

� (vi )

= Wc
gui1X1

gui (vi ) + bc
gui1 + Wc

gui2 X2
gui(vi ) + bc

gui2

+Wc
gcm3X3

gcm(vi) + bc
gcm3 + Wc

gcm4X4
gcm(vi ) + bc

gcm4

+Wc
gcm5X5

gcm(vi) + bc
gcm5 + Wc

gloXglo(vi) + bc
glo, (12)

and

Z (vi )

= Wc�
gui1 X1

gui(vi ) + bc�
gui1 + Wc�

gui2 X2
gui (vi) + bc�

gui2

+Wc�
gcm3X3

gcm(vi ) + bc�
gcm3 + Wc�

gcm4X4
gcm(vi ) + bc�

gcm4

+Wc�
gcm5X5

gcm(vi ) + bc�
gcm5 + Wc�

gloXglo(vi ) + bc�
glo. (13)

In Eq. (11), p (·) computes the probability, where c ∈ {0, 1}
and c� ∈ {0, 1}. In Eq. (12) and Eq. (13), vi represents the
location of pixel i . y(vi) and ŷ(vi ) represent the ground truth
and the predicted saliency value of the pixel i , respectively.

Similar to [16], we adopt the joint loss function by employ-
ing the cross-entropy loss and IoU Boundary loss. The
cross-entropy loss function is defined as

C E (v) = − 1

N

N∑
i=1

∑
c∈{0,1}

(y(vi) = c)
(
log

(
ŷ(vi ) = c

))
. (14)

The IoU boundary loss is defined as

IoU Loss = 1 − 2|C j ∩ Ĉ j |
|C j | + |Ĉ j |

, (15)

where Ĉ j and C j are the gradient magnitudes of saliency map
and the ground truth corresponding to region j , respectively.
The gradient magnitude is computed by using a Sobel oper-
ator followed by a tanh activation on the saliency map. |·|
represents the number of non-zero entries in a mask.

The joint loss function is

Joint Loss = C E + IoU Loss. (16)

Following [19], the CRF method in [59] is adopted for
further smoothness.

IV. EXPERIMENTS

In this section, we evaluate our proposed salient object
detection network, and compare it with a number of state-of-
the-art (SOTA) methods on three public benchmark datasets.
Besides, some ablation experiments are performed to illustrate
the effectiveness of the proposed GCM and guidance strategy
in our method.

A. Experimental Setup

1) Datasets: We evaluate the proposed method on
three benchmark datasets, including ECSSD [60], DUT-
OMRON [12], and HKU-IS [22]. ECSSD [60] contains
1000 images with multiple salient objects and struc-
turally complex scenes. DUT-OMRON [12] is composed
of 5168 images, each of which contains one or more salient
objects with cluttered backgrounds. HKU-IS [22] includes
4447 images with multiple low-contrast salient objects. This
dataset has been split into 2500 training images, 500 vali-
dation images, and 1447 test images, and we fairly evaluate
our method and the SOTA methods on the test set (i.e.,
HKU-IS-TE) of this dataset.

2) Evaluation Metrics: We apply multiple widely used
evaluation metrics to evaluate the proposed method, including
precision-recall curve [61], F-measure curve [61], and Mean
Absolute Error (MAE) [62]. Given a continuous saliency map
S, a binary mask B is achieved by thresholding. Precision
is defined as Pr ecision = |B∩G|

|B| , and recall is defined as

Recall = |B∩G|
|G| , where G is the corresponding ground truth.

The PR curve is plotted by numerous pairs of precision and
recall under different thresholds.

The F-measure metric is defined as

Fβ =
(
1 + β2

)
Pr ecision × Recall

β2 Pr ecision + Recall
, (17)

where β2 = 0.3, as suggested in [61]. The F-measure curve
is plotted by 255 F-measure values, which are computed by
255 pairs of precision and recall values under 255 thresholds.

MAE is defined as

M AE = 1

W × H

W∑
i=1

H∑
j=1

|S (i, j) − G (i, j)|, (18)

where W and H represent the width and height of the input
image, respectively.

3) Implementation Details: The proposed model is imple-
mented in Tensorflow [66]. The weights in the backbone,
i.e., the VGG16 architecture, are initialized with the pretrained
weights of VGG16 [56]. The other weights are initialized
randomly with a truncated normal (σ = 0.01), and the biases
are initialized to 0. The Adam optimizer [67] is used to train
our model with an initial learning rate of 106, β1 = 0.9, and
β2 = 0.999.
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Fig. 8. Visual comparisons of different methods. (a) Original images; (b) Ground truth; (c) OUR; (d) DCL [19]; (e) NLDF [16]; (f) Amulet [15]; (g) UCF [27];
(h) MDF [22]; (i) ELE [63]; (j) DLS [26]; (k) DSR [64]; (l) MST [65]. (d)–(f): R-SOTA methods. (g)–(l): G-SOTA methods.

The MSRA10K [68] dataset, which contains 10000 images
with high contrast, is used to train the proposed salient
object detection network. Horizontal flipping is used for data
augmentation. The inputs are resized to 352 × 352. With a
NVIDIA Titan X GPU, it takes about 2 hours to finish the
whole training procedure for 1 epoch with a single image
batch size, which is due to the large training data. We take
the trained model of epoch 17 as the test model. The test
time for an image is about 0.08 seconds. For the training of
GGM for each input image, we first compute the Prediction-
5 by the deepest-level feature maps of GCM-5. Prediction-5 is
used as a guidance feature map to guide the feature maps
of GCM-4. Those feature maps of GCM-5 are not guided
anymore because they are at the deepest layer.

B. Comparisons With SOTA Methods

In this section, we compare our method with 6 General-
SOTA (G-SOTA) methods, including 4 CNN-based meth-
ods (UCF [27], MDF [22], ELE [63] and DLS [26]) and

2 traditional methods (DSR [64] and MST [65]). Besides,
the proposed method is also compared with 3 Relative-SOTA
(R-SOTA) CNN-based methods (NLDF [16], Amulet [15],
and DCL [19]) that are based on the integration of multi-level
contextual information.

1) Visual Comparisons: Fig. 8 shows the visual compar-
isons of the proposed method with the SOTA methods on
multiple difficult cases, including large object (LO), small
object (SO), multiple objects (MO), object touching the image
boundary (TB), complicated background (CB), and low con-
trast between foreground and background (LC).

Taking into account all the mentioned cases in Fig. 8, it can
be easily seen that our proposed method can highlight the
whole salient object(s) with satisfactory uniformity. Specif-
ically, the proposed method can detect salient objects with
different sizes wholly. In contrast, the G-SOTA methods just
detect parts of the large salient object or even fail at identifying
the small one (as shown in Fig. 8(d), (e), and (k) for the
group of SO). For those images with multiple objects, some
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Fig. 9. PR and F-measure curves of different methods.

TABLE IV

MAE OF DIFFERENT METHODS FOR (A) ECSSD [60], (B) DUT-OMRON [12], AND (C) HKU-IS-TE [22]

of the G-SOTA methods miss some salient objects, which can
be well solved by the proposed method. This is because the
G-SOTA methods ignore the multi-size/multi-level contextual
information,2 which easily misses different-size objects and
even mis-detects some salient objects in the case of multiple
objects. Those salient objects touching the boundary can
also be accurately detected by the proposed method, but the
previous G-SOTA methods perform poorly in this case. This
is attributed to the boundary prior (DSR [64] and MST [65])
that assumes the image boundary as background, and the lack
of comprehensively global information (UCF [27], MDF [22],
ELE [63], and DLS [26]). Especially, those salient objects
in images with complicated background and low contrast
are challenging for the previous G-SOTA methods based
on the fact that the G-SOTA methods just detect parts of
salient objects or fail at identifying them. This is owing to
the fact that the G-SOTA methods cannot extract features
discriminative enough to distinguish the unobtrusive salient
objects. Fortunately, our method can still highlight the salient
objects with good uniformity.

Moreover, compared with the R-SOTA methods, the pro-
posed method achieves much better wholeness, foreground

2MDF [22] achieves the multi-size information through cropping the input
image, which will crop out the salient object and thus cannot detect it.

uniformity, and background suppression for the salient object,
and better robustness to salient objects with different sizes.
As illustrated in Fig. 2 and Fig. 8, the proposed method
can overcome the limitations of the existing practices for
integration of multi-level feature maps and side outputs. To be
specific, compared with the traditional multi-level informa-
tion integration (NLDF [16], DCL [19], and Amulet [15]),
the proposed method can evade the misleading information and
thus predict complete salient object with better background
suppression, and make up those parts of salient objects missed
by DCL [19], which is owing to correction by the rich feature
maps of the shallow layers.

2) Quantitative Comparisons: Fig. 9 illustrates the PR
and F-measure curves of different methods. Table. IV dis-
plays MAE values of the proposed method and the com-
pared ones. It can be easily seen that the proposed method
achieves best performance in terms of all the evaluation
metrics for ECSSD [60] and DUT-OMRON [12]. For HKU-
IS-TE [22], the proposed method performs best with respect
to the F-measure curves and MAE, and slightly worse than
DCL [19] with respect to the PR curves. Actually, the images
of ECSSD [60] and DUT-OMRON [12] are more difficult than
HKU-IS-TE [22] for salient object detection. Therefore, it is
obvious that the proposed method performs more robustly
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Fig. 10. Illustrations for the performance of GCM on ECSSD [60]. Left:
PR curves; Right: F-measure curves.

Fig. 11. Illustrations for the effectiveness of GCM. (a) Original images;
(b) Without GCM; (c) With GCM; (d) Ground truth.

than the previous methods in complex cases, which meets
the requirements of the real scene. This is attributed to the
guidance strategy, i.e., GGM, that effectively integrates the
high-level knowledge and the low-level cues, and the high-
contrast features extracted by the proposed GCM.

C. Ablation Analysis

In this section, we conduct a serious of ablation analyses to
better understand the proposed method.

1) With/Without GCM: Fig. 10 and Fig. 11 show the
improvements of the proposed GCM from the quantitative
and visual perspectives, respectively. It can be easily observed
from Fig. 10 that the performance of the backbone is greatly
promoted by the proposed GCM. Similar conclusions can
be drawn from Fig. 11 as well. As discussed in the pre-
vious sections, the proposed GCM can extract the salient
features amongst the trivial ones. Therefore, GCM helps detect
low-contrast foreground (as shown in the first two rows of
Fig. 11) and non-noticeable small-size salient objects (as
shown in the last two rows of Fig. 11).

2) With/Without GGM: Fig. 12 and Fig. 13 illustrate the
performance of GGM quantitatively and visually, respectively.
Seen from Fig. 12 and Fig. 13, it is obvious that GGM
improves the performance. GGM provides a more compre-
hensive integration of multi-level contextual information by
using the deeper-level side output to guide the shallower-level
feature maps. This cross practice between side outputs and
feature maps efficiently combines their advantages. Therefore,
GGM provides complete detections for the salient objects (as
shown in the first two rows of Fig. 13) and clean background
suppression (as shown in the last two rows of Fig. 13).

3) Guidance Strategy: DGM vs GGM: As discussed
in Section III-C, there are a baseline guidance strategy,
i.e., DGM, and a comprehensive guidance strategy, i.e., GGM,

Fig. 12. Illustrations for the performance of GGM on ECSSD [60]. Left:
PR curves; Right: F-measure curves.

Fig. 13. Illustrations for the effectiveness of GGM. (a) Original images;
(b) Without GGM; (c) With GGM; (d) Ground truth.

Fig. 14. Quantitative comparisons on ECSSD [60]: DGM vs GGM. Left:
PR curves; Right: F-measure curves.

Fig. 15. Visual comparisons: DGM vs GGM.

for the proposed guidance strategy. Fig. 14 and Fig. 15
illustrate the comparisons between DGM and GGM. It can be
easily found from Fig. 14 that GGM gets better quantitative
performance than DGM. Moreover, it can be also noticed
from Fig. 15 that GGM achieves much better foreground
wholeness (as shown in the first three rows of Fig. 15) and
background suppression (as shown in the last row of Fig. 15)
than DGM. The superiority of GGM over DGM is owing
to the embedding of the proposed GCM in GGM, which
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Fig. 16. Some failure cases for our proposed method.

aggregates the advantage of GCM to further improve the
proposed multi-level contextual information integration.

D. Failure Cases

Fig. 16 shows some failure cases for our proposed method.
The scenes in those images contain complex semantic knowl-
edge. Scene understandings are needed to detect the salient
objects within these images, which is challenging for our
proposed method. To address this problem, we will take into
account the knowledge of scene understanding [69], [70] and
scene parsing [71], [72] to improve the performance of our
method in the future.

V. CONCLUSION

In this paper, we have presented a deep salient object
detection network, in which a novel guidance strategy is
proposed for effective integration of multi-level contextual
information, and a group convolution module is proposed to
improve the feature discriminability. Moreover, incorporating
the proposed GCM in the contextual information guidance
strategy further promotes the guidance role of deeper-level
side output for the shallower-level feature maps. In the future,
we will integrate scene understanding and scene parsing in
our work to improve the performance. Besides, we will apply
our salient object detector to facilitate the representation
ability of existing deep networks [73], [74] and real-world
applications, including image retrieval [75], [76] and image
classification [77].
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