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Capsule Networks With Residual Pose Routing
Yi Liu , De Cheng , Dingwen Zhang , Member, IEEE, Shoukun Xu, and Jungong Han , Senior Member, IEEE

Abstract— Capsule networks (CapsNets) have been known
difficult to develop a deeper architecture, which is desirable for
high performance in the deep learning era, due to the complex
capsule routing algorithms. In this article, we present a simple
yet effective capsule routing algorithm, which is presented by
a residual pose routing. Specifically, the higher-layer capsule
pose is achieved by an identity mapping on the adjacently
lower-layer capsule pose. Such simple residual pose routing
has two advantages: 1) reducing the routing computation com-
plexity and 2) avoiding gradient vanishing due to its residual
learning framework. On top of that, we explicitly reformulate
the capsule layers by building a residual pose block. Stack-
ing multiple such blocks results in a deep residual CapsNets
(ResCaps) with a ResNet-like architecture. Results on MNIST,
AffNIST, SmallNORB, and CIFAR-10/100 show the effectiveness
of ResCaps for image classification. Furthermore, we successfully
extend our residual pose routing to large-scale real-world appli-
cations, including 3-D object reconstruction and classification,
and 2-D saliency dense prediction. The source code has been
released on https://github.com/liuyi1989/ResCaps.

Index Terms— 3-D point cloud, capsule network (CapsNet),
part-whole, residual routing, salient object detection.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have been
known as a classic architecture for image recognition

due to their high representation power. They can recognize
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the image by detecting the existence of a specific entity, i.e.,
invariance. However, an unsophisticated perturbation on the
image can fool a well-trained network to fail in recognition [1],
[2], [3], [4]. More worryingly, natural and non-adversarial pose
changes of familiar objects in the real world are enough to trick
deep networks [5], [6].

Instead of pursuing invariance, some researchers advo-
cate the equivariance property in a neural network [7], [8].
A recently developed neural architecture, called capsule net-
works (CapsNets) [9], [10], was proposed to achieve this
argument by encapsulating the poses (instantiation parameters)
of an entity in a group of neurons. The routing-by-agreement
mechanism in CapsNets can learn the underlying part-whole
spatial relationships for further compositional representations
of the scene, which can promisingly help to detect properties
of many different levels within one network. This is essentially
the human vision ability of scene understanding in psychology.
However, it is difficult for the traditional CNN models to
capture the part-whole hierarchies of the scene. The reason
behind can be illustrated as follows. First, traditional CNN
models usually infer with fixed parameters, which cannot
dynamically allocate a group of neurons to represent a node
in a parse tree. In contrast, CapsNets design a dynamic
routing algorithm, which can dynamically allocate neurons
to represent a small portion of the visual input. Second, the
max pooling, a vital component of traditional CNN models,
makes neurons in one layer to focus on the most active feature
detector in a local pool in the layer below, which results in
difficulty in capturing precise spatial relations between entities.
Differently, CapsNets discard the operation of max pooling,
which ensures our model not throw away information about the
precise position of the entity within the region. In light of these
two advantages, traditional CNN models are difficult to capture
the part-whole hierarchies of the scene, while CapsNets can
solve this issue to capture compositional representations of the
image for scene understanding.

However, the existing CapsNets have been criticized for
not facilitating deep architectures and large-scale real-world
applications due to the heavy capsule routing algorithms,
e.g., the dynamic routing algorithm [9] and the expectation-
maximization (EM) routing algorithm [10]. First, the fully
connected routing mechanism produces a large number of
transformation matrix parameters, as can be seen in Fig. 1(a).
Second, the unsupervised computational routing procedure
is computationally expensive. Third, the adopted routing-by-
agreement mechanism [9], [10] assumes a cluster distribution
of predictions, which may fail when there exist a number of
noisy prediction poses or the input data are out of distribu-
tion. While some simplified CapsNets [11], [12], [13], [14]
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Fig. 1. Residual pose routing versus EM routing. The fully connected EM
routing causes large parameters and heavy computation, while our residual
pose routing employs the sparsely connected routing, getting parameters
reduced, and computation efficient. The pose matrices and activation values
of all learned capsules are integrated via convolution and ReLU to achieve
the capsule features. (a) EM routing. (b) Residual pose routing.

use auxiliary knowledge like attention, their overall perfor-
mance is still not satisfactory in terms of a high computation
consumption and low recognition accuracy.

From what has been discussed above, the limitation of
CapsNets makes a challenge for a deeper CapsNet. First, the
existing CapsNets mostly cannot be easily plugged in deep
structures owing to their complex routing algorithms. Second,
even though the current CapsNets have achieved promising
performance on small-scale images and simple tasks, e.g.,
recognition for digital images and CIFAR, which share the
image sizes of 28 × 28 and 32 × 32, it is a challenge
to tackle the large-scale images and complex tasks. This
may be because large-scale images and complex tasks con-
tain complicated linear nonseparable problems for the simple
shallow CapsNets that include three capsule routing layers.
To this end, the deeper architecture of CapsNets is a solution
to fit the linear nonseparable problems to solve complex
issues. Besides, compared with a shallow network, a deeper
architecture will have a powerful feature representation, which
helps to capture the semantics in complicated scenes. This is
a distinctive characteristic of the deep learning era. Therefore,
a deep architecture for CapsNets is an urgent challenge to be
solved.

In this article, we propose a simple but powerful capsule
routing to implement deep CapsNet. By revisiting the routing-
by-agreement procedure in CapsNet [10], we discover that a
capsule is able to represent its associated capsules in terms of
the pose via a learned transformation weight matrix. In this
sense, the higher-layer capsule pose can be computed by inte-
grating the lower-level capsule pose and its associates’ poses,
which is implemented by an identity mapping in Fig. 1(b).
The activation of the higher-layer capsule can be implicitly
computed from the pose matrix. Such residual pose routing
can compute all the higher-layer capsules in a parallel and
unidirectional manner, as shown in Fig. 1(b). On top of that,
we integrate the learned capsules to achieve the association

between each capsule and other capsules in the same layer.
Our residual pose routing has three advantages: 1) our sparsely
unidirectional connected fashion greatly reduces the network
parameters, compared with the reciprocating iterative fully
connected pattern; 2) thanks to 1), our model speeds up the
inference stage (as will be verified in Section V-B4) and
training stage (∼10% training time per epoch compared with
the original EM routing algorithm); 3) our routing learns to fit
the clustering distribution, which further improves the repre-
sentation ability for finding the distribution of high-dimension
data in complex scenarios, compared to the unsupervised
clustering routing in [10]; and 4) our routing is capable of
avoiding vanishing gradient, which makes it possible to design
a deeper CapsNet architecture.

Inspired by the simplicity and effectiveness of the proposed
residual pose routing, we build a deep CapsNet architecture,
which consists of five capsule routing blocks. Specifically,
each of the first four blocks is composed of one Primary
Capsule (PrimaryCaps) layer and two residual pose routing
(ResP) layers with the purpose of capsules construction and
residual pose routing, respectively. The last block contains one
PriCaps layer and one residual pose classification (ResPC)
layer for the purpose of image classification. The downsam-
pling stride of 2 is utilized between two blocks, resulting in
a deep ResNet-like architecture. Evaluations on MNIST [15],
AffNIST, smallNORB [16], and CIFAR-10/100 [17] show that
such deep CapsNet significantly increases the accuracy of
image classification.

Thanks to the lightweight of our residual pose rout-
ing, we generalize it to the tasks of 3-D reconstruction/
classification and 2-D image saliency dense prediction, which
are typical large-scale real-world applications. On top of the
framework of [18], we incorporate our residual pose routing
to explore part-whole relationships for 3-D reconstruction/
classification, and get promising gains on ModelNet40 [19].
Besides, on top of the framework of [20], we incorporate
our residual pose routing for visual saliency, and prove our
algorithm to be simple yet effective compared with the pre-
vious part-whole relational saliency methods, particularly in
scenarios where lightweight backbone models, e.g., VGG-16,
are employed.

The main contributions of this article include the following.
1) A novel residual pose routing algorithm is proposed,

which greatly reduces routing parameters and computational
complexity.

2) A deep ResNet-like CapsNet architecture thanks to
residual pose routing’s ability of avoiding gradient vanishing.

3) Successful showcases of our residual pose routing in mul-
tiple real-world tasks, such as 3-D reconstruction/classification
and 2-D image saliency dense prediction, demonstrate that
residual CapsNets (ResCaps) can be well generalized to
large-scale real-world applications.

The article is organized as follows. Section II reviews the
related work to our model. Section III describes the details of
the proposed framework. Section IV illustrates the architecture
of our ResCaps network. Section V implements abundant
experiments and analysis to study our model. Section VI
concludes the article.
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II. RELATED WORK

In this section, we will review the related work to our
network, focusing on the capsule routing algorithm, CapsNet
architecture, CapsNet-related applications, and residual
learning.

A. Capsule Routing Algorithm

The capsule routing algorithm plays a fundamental role
in CapsNet and performs capsules’ assignments across adja-
cent layers. The dynamic routing [9] and EM routing [10]
algorithms have been widely recognized for capsules’ assign-
ments. The former generates capsules by computing the vector
similarity of different low-layer capsules, while the latter
computes the capsule pose and activation via executing the
EM algorithm on various low-layer capsules. Inspired by their
ideas, many variants of capsule routing have been proposed.
For example, Hahn et al. [13] introduced a self-routing strategy
for capsules’ assignments. Ahmed and Torresani [21] utilized
a straight-through attentive mechanism for routing coefficients
estimation. Ribeiro et al. [22] introduced the uncertainty to
the capsule routing to generate global part-whole assignments.
Li et al. [23] approximated the routing process by interacting
two branches in a supervised manner. Feng et al. [24] proposed
a dual-routing capsule graph neural network to solve the
problem of few-shot video classification. These methods esti-
mate the capsule routing with some knowledge, e.g., attention.
However, they focus less on the lightweight of the capsule
routing.

Differently, our residual pose routing 1) generates the
capsules in a unidirectional forward manner instead of a
recurrent procedure adopted by the dynamic routing and the
EM routing algorithms, which can significantly simplify the
routing computation; and 2) employs the sparsely connected
routing instead of the fully connected routing used by most
of the previous capsule routing strategies, which reduces the
routing parameters.

B. CapsNet Architecture

The early CapsNet architecture simply employed a trans-
forming autoencoder [8] to compute the existence probability
and spatial location of an entity. Later, they took a milestone
step to design the vector CapsNet [9], in which one primary
capsule layer was implemented for capsules construction,
and one decoder layer for digit reconstruction. They fur-
ther consolidated it by proposing the Matrix CapsNet [10],
which contained one primary capsule layers, two convolutional
capsule layers, and one capsule classification layer. Besides,
various architectures have been designed for CapsNet. For
instance, Lenssen et al. [11] presented a group CapsNet to
enhance equivariance properties. Rajasegaran et al. [12] imple-
mented CapsNet with the 3-D convolution. Chen et al. [25]
devised a set of optimizable receptors and a transmitter for
capsule representation. Vasantharao et al. [26] injected the
spatial transformation network into the CapsNet via latent code
manipulation. Tao et al. [27] replaced the primary capsule
layer of the original CapsNet with an adaptive capsule layer,
which preserved the spatial information for each capsule and

local relations among capsules. These methods achieve some
progress for CapsNets architectures with various operations,
e.g., 3-D convolution. However, they still cannot address the
demand of the deep CapsNets architecture.

Differently, our ResCaps architecture makes it real for the
deep CapsNet, which benefits from our lightweight residual
capsule routing algorithm. Specifically, our ResCaps designs a
deep ResNet-like architecture composed of five capsule blocks,
each of which contains one capsules construction layer and
several capsule routing layers.

C. CapsNet-Related Applications

In light of the excellent property of CapsNet, they have
been successfully embedded in many tasks. For instance,
Liu et al. [28] employed CapsNets to visual saliency, in which
CapsNets were utilized to explore the part-whole relation-
ships in the image to achieve the whole object saliency.
Following that, contrast cues derived by CNNs and part-whole
relations discovered by CapsNets were integrated to com-
plement each other for better saliency detection [29] and
camouflaged detection [30]. Besides, CapsNets endowed the
spatial–temporal relationships for regression tracking [31],
where spatial CapsNet and temporal CapsNet were designed
to encode spatial relationships and temporal relationships,
respectively. CapsNets were also successfully embedded in
the task of visual question answering with the aim of finding
the relevant regions [32] and merging parts with human-
prior hierarchies [33]. Garau et al. [34] made use of the
viewpoint-equivariance of CapsNet to solve the problem of
human pose estimation. Yu et al. [35] discovered face parts
with the aid of hierarchical CapsNets. Sun et al. [36] embedded
CapsNet for learning canonical pose in 3-D point cloud.
Zhao et al. [18] used CapsNet to sparse 3-D point clouds
while preserving spatial arrangements of the input data, where
the 2-D latent space brought in improvements for several
common point cloud-related tasks. Zhuge et al. [20] employed
CapsNets to extract part-whole semantics to improve the
micro-level integrity for each salient object. Wu et al. [37]
devised a user-specific capsule module and a position-aware
gating module to capture the sequential patterns at union-level
and point-level for the issues of next-item recommenda-
tion. Cheng et al. [38] utilized the dynamic routing in the
encoder and a static routing in the decoder for zero-shot
learning. Wang et al. [39] designed a group CapsNet to
segment the hemorrhage region from a non-contract CT scan.
Ma and Wu [40] utilized the CapsNet to explore the part-whole
relations for regression tracking. Bonheur et al. [41] proposed
an only CapsNet for multilabel semantic segmentation.

In this article, we select the object understanding in 3-D
point clouds and 2-D image salient object detection to inves-
tigate the capacity of our proposed capsule routing. Different
from the previous CapsNet-based 3-D object understanding
(i.e., PointCaps [18]) and CapsNet-based image salient object
detection (i.e., TSPOANet [42]) that adopted the heavy rout-
ing [9], [10] for scene parsing, our proposed residual pose
routing can not only present lightweight with fewer parameters
and simple routing complexity, but also achieve better parsing
performance.
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D. Residual Learning

Residual learning was derived from the residual net-
work [43], in which the identity mapping [44] was realized
by the residual connection to achieve a deep network while
avoiding the gradient vanishing. Thereafter, residual learning
has been utilized widely to advance many tasks. For example,
Ke et al. [45] designed a side-output residual network to
fit the errors between ground-truth and the outputs of the
stacked residual units, enforcing the modeling capability to
symmetry in complex backgrounds. Tran et al. [46] imputed
the missing modality with a cascaded residual autoencoder.
Feichtenhofer et al. [47] designed a spatial–temporal residual
unit for dynamic scene recognition. Wang et al. [48] used
residual skip connection to learn attentions in a Siamese
network for online visual tracking.

In view of the power of the residual learning, it has
been successfully used for CapsNet. For example,
Gugglberger et al. [49] trained a deep CapsNet with a residual
connection to integrate the input and its capsule routing out.
Ding et al. [50] added a capsule based max-pooling as a skip
connection to adaptively choose the routing or max-pooling
to reduce computational complexity.

In this work, we employ residual connection in the capsule
routing to learn residual part-whole hierarchies in a scene.
Different from [49] that used residual connection outside the
capsule routing in a straightforward way, we embedded the
residual learning inside the capsule routing for pose compu-
tation, which learns a residual routing and results in a deep
network with avoiding the gradient vanishing problem.

III. PROPOSED RESIDUAL POSE ROUTING

A. Revisiting the Routing-by-Agreement Mechanism in EM
Routing

The EM routing algorithm in the matrix CapsNet [10]
assumes a Gaussian distribution for capsules. On top of that,
the EM algorithm clusters associated capsules together to com-
pose a whole. Based on this routing-by-agreement mechanism
in the EM routing algorithm [10], the associated mL capsules
(CapL

1 , CapL
2 , . . . , CapL

mL ) in layer L will be clustered to
compose a whole capsule CapL+1

j in layer (L + 1), i.e.,

CapL+1
j = frou

(
CapL

1 , CapL
2 , . . . , CapL

mL

)
(1)

where frou represents the routing algorithm, e.g., the EM
routing algorithm in [10].

Focusing on (1), the whole CapL+1
j can be composed of mL

part capsules. We can imagine that the whole capsule CapL+1
j

can be composed of t L sub-whole capsules, i.e.,

CapL+1
j = frou

(
SubCapL

1 , SubCapL
2 , . . . , SubCapL

t L

)
. (2)

Similarly, each sub-whole capsule SubCapL
i can be com-

posed of several sub-whole capsules further, each of which can
be composed of several associated part capsules in layer L .
For the basic case, each sub-whole consists of two associated
part capsules in layer L .

Let us discuss the routing-by-agreement for two associated
capsules. Suppose capsules i1 and k in one layer and capsule

1In this article, capsule i refers to the i th type capsule.

Fig. 2. Illustration for the routing-by-agreement mechanism. When associated
capsule i and capsule k make their familiar whole capsule j in the higher
layer, their votes are approximately equal.

j in the higher layer have pose matrices pi , pk , and p j ,
respectively, all with the dimension of 4 × 4. The finding
for the routing-by-agreement mechanism will be elaborated as
follows.

Step 1: Vote computation for the viewpoint invariant
relations.

The viewpoint invariant relations from capsule i to the
adjacently higher-layer capsule j can be revealed by vote
vi j , which is computed by multiplying the pose matrix pi of
capsule i with a viewpoint invariant transformation wi j , i.e.,

vi j = pi wi j (3)

where wi j is learned discriminatively through a cost function
and the backpropagation. It learns not only what a whole is
composed of, but it also makes sure the pose information of
the parent capsule matched with its sub-components after some
transformation.

Step 2: Routing by agreement.
In nature, a whole object, e.g., face, can be composed by two

familiar parts, e.g., mouth and nose. In other words, these two
parts must share familiar attributes, so they can be composed
together to a whole. This nature can be revealed by CapsNets.
Specifically, as shown in Fig. 2, given familiar capsules, e.g.,
capsule i and capsule k, an adjacently high-layer capsule j
is detected by looking for agreement between their viewpoint
invariant relations, i.e., vi j and vk j . Their agreement in the
viewpoint invariant relations can be written as

vi j ≈ vk j . (4)

Using (3) and (4) becomes the following formulation:

pi wi j ≈ pkwk j (5)

where wi j and wk j are the viewpoint invariant transformation
matrices.

In addition, the visualization of the intuition in (5) can be
found in Fig. 10 of [28].

B. Residual Pose Routing

Based on the analysis of the routing-by-agreement mech-
anism, we will develop a residual pose routing algorithm
for capsules assignments. In the following, we will describe
the details of the residual pose routing algorithm, including
pose matrix computation, activation computation, and capsules
integration.
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1) Pose Matrix Computation: From the routing-by-
agreement mechanism in (5), we can draw a conclusion, i.e.,

pk ≈ pi
wi j

wk j
. (6)

In view of the fact that the parameters wi j and wk j are both
learnable, we can learn a weight matrix wik to substitute for
(wi j/wk j ), i.e.,

pk ≈ pi wik . (7)

In (6), we can see that capsule i can compute its associ-
ated capsule k via a learned transformation matrix with the
dimension of 4 × 4. More generally, capsule k is the set of
associated versions of capsule i , which can be encoded by wik

in (7) implicitly. On top of that, every capsule in one layer can
compute its associated sets of capsules.

Capsule i and its associated capsule set k in layer L can
make their familiar whole capsule j in layer (L+1). To achieve
this, we choose the simple yet effective vector addition in
terms of pose matrices pL

i and pL
k , i.e.,

pL+1
j = pL

i + pL
k = pL

i + pL
i wL

ik = pL
i (1+wik). (8)

In (8), the pose of the familiar capsule j in layer (L +1) can
be computed by an identity mapping on the pose of capsule
i in layer L .

In summary, by revisiting the capsule routing-by-agreement
in EM CapsNet [10], we discover that when a capsule i
and its associated capsule k vote for a higher-layer capsule,
the capsule pose pi can represent its associated capsule pk

via a learned transformation weight matrix. Based on this
intriguing finding, we draw a further conclusion that pk can be
generalized to the associated capsules’ sets’ pose of capsule i .
In this sense, the higher-layer capsule pose is able to be
computed by integrating the lower-level capsule pose and its
associates’ poses, which can be implemented by an identity
mapping.

Suppose there exist N type capsules in layer L .
By using (8), the pose of capsules in layer (L + 1) can be
computed by

pL+1
=

[
pL+1

1 , pL+1
2 , . . . , pL+1

N

]
=

[
pL

1 (1 + w1), pL
2 (1 + w2), . . . , pL

N (1 + wN )
]

(9)

where wi is the learned transformation matrix with the dimen-
sion of 4 × 4. [·] represents the operation of concatenation.

a) Primitive understanding for residual pose routing:
Apart from the mathematical formulations of (6) and (7), there
is a primitive understanding on our residual pose routing, i.e.,

1) wi j /wk j learns the transformation relations between cap-
sule i /k and the higher-layer capsule j . In doing (6), the
transformation relations between associated capsules i and k
must be discovered via the higher-layer capsule j .

2) wik learns the transformation relations between capsule
i and capsule k within one layer. In doing (7), the transfor-
mation relations between associated capsules i and k can be
discovered directly via a learnable matrix wik .

3) Comparing 1) and 2), wi j /wk j and wik both compute the
transformation relations between associated capsules i and k.
It is evident that we can replace wi j /wk j with wik .

2) Activation Value Computation: The pose matrices of
capsules in layer (L + 1) have been achieved from capsules
in layer L . The activation of each capsule in layer (L + 1)
can be implicitly encoded by its pose matrix. To this end,
a convolution operation is carried out on the pose matrix to
encode the implicit knowledge of the pose matrix, which is
followed by a Sigmoid function to compute the activation
value, i.e.,

aL+1
j = fSig

(
fConv

(
pL+1

j

))
(10)

where fSig(·) and fConv(·) represent the Sigmoid function and
the convolution operation, respectively.2 Similar to pose, the
activation values of capsules in layer (L +1) can be written as

aL+1
=

[
aL+1

1 , aL+1
2 , . . . , aL+1

N

]
=

[
fSig

(
fConv

(
pL+1

1

))
, fSig

(
fConv

(
pL+1

2

))
, . . . ,

fSig
(

fConv
(
pL+1

N

))]
. (11)

C. Capsules Integration

Each capsule can be achieved by concatenating pose matrix
pL+1

j in (8) and activation value aL+1
j in (10), i.e.,

CapL+1
j =

[
pL+1

j , aL+1
j

]
. (12)

However, the individual computation for the pose of each
capsule ignores the associations between it and other capsules
in the same layer, which will cause some problems. First, the
associate capsules set pk of capsule i , i.e., pi × wik , may
have redundant knowledge with other capsules in layer L .
Second, the neglect of the association between capsule i and
other capsules in layer L may produce weak whole capsule
in (L + 1). To solve these problems, we integrate the learned
capsules into layer (L + 1). We choose a simple convolution
operation to encode primitive features from the capsules in
layer (L + 1), i.e.,

CapFL+1

= fReLU
(

fConv
([

CapL+1
1 , CapL+1

2 , . . . , CapL+1
N

]))
(13)

where fReLU(·) represents the activation function of ReLU.
CapFL+1 means the primitive features by integrating all the
learned capsules in layer (L + 1).

By using (13), the learned capsules are integrated together to
achieve more primitive features, which can address the routing
redundancy and enhance whole representation to some extent.
Algorithm 1 illustrates the procedure of the proposed residual
pose routing algorithm.

D. Deeper Insight Into Residual Pose Routing Algorithm

1) Gradient Vanishing Avoiding: Denoting the loss function
as ε from the chain rule of back-propagation [51], we can
conclude

∂ε

∂pL
=

∂ε

∂pL+1

∂pL+1

∂pL

=
∂ε

∂pL+1

∂
[
pL

1 (1 + w1), pL
2 (1 + w2), . . . , pL

N (1 + wN )
]

∂
[
pL

1 , pL
2 , . . . , pL

N

]
2The weight and bias terms are neglected for simplicity in this article.
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Fig. 3. ResCaps network. The network architecture consists of five blocks. Each of the first four blocks is composed of one PriCaps layer and two ResP
layers. The block five consists of one PriCaps layer and one ResPC layer.

Algorithm 1 Residual pose routing algorithm Returns Pose
and Activation of the Capsules in Layer (L + 1) Given the
Pose p of N Type Capsules in Layer L and the Learned
Transformation Matrix w for Each Capsule. pi Is the Pose
Matrix of Capsule i in Layer L

procedure RESIDUAL POSE ROUTING (p)
1. Learn the capsule pose for layer (L + 1): pL+1

i =

pL
i (1+w);

2. Learn the capsule activation for layer (L +1): aL+1
i =

fSig( fConv(pL+1
i ));

3. Integrate capsules for layer (L + 1): CapFL+1
=

fReLU ( fConv([[pL+1
j , aL+1

j ]
N
1 ])).

=
∂ε

∂pL+1


1 + w1 0 · · · 0

0 1 + w2 · · · 0
...

...
. . .

...

0 0 · · · 1 + wN

. (14)

It can be seen in (14) that the gradient of (∂ε/∂pL) can be
decomposed into two components: 1) (∂ε/∂pL+1) propagates
the information directly without concerning any weight layers
while focusing on the current-layer pose, which ensures that
the information is propagated directly back to any-layer pose;
and 2) (∂ε/∂pL+1)w∗ propagates the information through a
transformation matrix w∗ to learn the associated versions of
each low-layer capsule. Equation (14) guarantees that the
gradient for (∂ε/∂pL) cannot be vanishing for a mini-batch
because the elements of the transformation matrix w∗ cannot
be always −1 for all samples in a mini-batch.

2) Complexity Comparison: We evaluate the complexity3

of the EM routing [10] and our residual pose routing. For
the EM routing [10], the major complexity lies in the matrix
multiplication and the EM algorithm, i.e.,

O(EMR) = O
(
B × H × W × Nlow × Nhigh

)
+ O(EM)

(15)

where B, H , and W represent the batch size, height, and width
of the input, respectively. Nlow and Nhigh are the capsule-type
numbers of adjacent layers. O(EM) represents the complexity
of the EM algorithm, which occupies the most cost of the EM
routing algorithm [10].

The major complexity of our residual pose routing algorithm
lies in the matrix multiplication, i.e.,

f RPR
= O(B × H × W × Nlow). (16)

3In this article, we focus on the complexity of the unsupervised
computation.

Fig. 4. PriCaps layer. Two branches are created to compute the pose matrix
and activation from the input image or convolutional features, respectively.

Comparing the complexities of the EM routing and our
residual pose routing, we can observe: 1) our residual pose
routing gets rid of the EM algorithm, which has significantly
reduced the computational costs; and 2) our residual pose
routing reduces the computation of matrix multiplication by
×Nhigh by employing the sparsely connected routing instead
of the fully connected routing adopted by the EM rout-
ing [10], which additionally leads to a decrease in the routing
parameters.

IV. RESCAPS NETWORK

In this section, based on the proposed residual pose routing
algorithm, we design a deep CapsNet architecture, named
ResCaps.

A. Network Architecture

Fig. 3 illustrates the network architecture of the developed
ResCaps consisting of five residual pose routing blocks. Prior
to residual pose routing blocks, the operation of Conv+ReLU
is used to extract features of the input data. Concretely, each
of the shallow four blocks is composed of one primary capsule
(PrimaryCaps) layer and two residual pose routing (ResP)
layers. The block 5 consists of one PriCaps layer and one
ResPC layer. In the following, we will describe the details of
the network architecture.

The PriCaps layer is utilized to generate capsule features
from the input image or features. Concretely, two branches
are created to compute the pose matrix and activation from
the input data, respectively. Specifically, a convolution layer
is applied to compute the pose matrix. A convolution and the
Sigmoid function are used to compute the activation values.
The pose matrix and activation value are concatenated to
compose the capsule features. Fig. 4 describes the details of
the PriCaps layer.

The ResP layer employs the residual pose routing algorithm
to explore the part-whole relationships in a scene. Fig. 5
illustrates the architecture of the ResP layer. Specifically, the
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Fig. 5. ResP layer. The ResP layer is used to embed the residual pose routing
algorithm into the network. w is the learned weight.

pose matrix of the capsule is multiplied with a learnable
weight matrix w with the dimension of 4 × 4 to achieve the
high-layer capsule pose matrix. On top of that, a convolution
and the Sigmoid function are used to generate the higher-layer
capsule activate value. A concatenation operation on the pose
matrix and the activation value is adopted to obtain the capsule
features. At the final stage, a convolution operation and the
ReLU activation function are utilized for capsules integration
to learn primitive features.

The ResPC layer is used for capsules’ classification. It has
the similar structure with the ResP layer except: 1) the output
capsule type of the ResPC layer is the classification category
number and 2) the final convolution and ReLU for capsules
integration are not demanded.

1) Different to RCCaps [49]: RCCaps [49] simply adds
residual connections between capsule layers. In reality,
RCCaps [49] indeed has no capsule layers increase, resulting
in a fake deep capsule architecture. Differently, our proposed
ResCaps has two main highlights: 1) our residual pose routing
embeds the residual connection inside the capsule routing
derived from the logical analysis, which simplifies the capsule
routing with less parameters and light complexity; and 2) our
ResCaps assembles several capsule blocks, and each block
contains several residual capsule routing layers, which indeed
builds a deep capsule architecture.

B. Loss Function

Given the activation values of the classification capsules,
we can train the ResCaps network using the spread loss func-
tion in [10]. Concretely, the spread loss is used to maximize the
gap between the activation of the target at and the activation
of the other classes. If the activation of a wrong class ai is
closer to at compared to the margin m, it will be penalized by
the squared distance to the margin. The spread loss function
can be formulated as

Lossi = max (0, m − (at − ai ))
2, Loss =

∑
i ̸=t

Lossi . (17)

V. EXPERIMENT AND ANALYSIS

In this section, we will analyze our ResCaps for image clas-
sification, 2-D image saliency, and 3-D object understanding.

A. Image Classification

In this section, following the previous CapsNet litera-
ture, we mostly use the public classification benchmarks for
image classification, including MNIST [15], AffNIST [15],
SmallNORB [16], and CIFAR-10/100 [17]. We implement
the proposed network on Pytorch. For the training procedure,

TABLE I
MEAN ERROR (%) AND ACCURACY (%) ON MNIST. “RESCAPS”

MEANS OUR ENTIRE FRAMEWORK CONSISTING OF FIVE BLOCKS.
“-” REPRESENTS NO RESULT RELEASED FROM THE ORIGINAL

PAPER OR RELATED PAPERS. THE BEST METHOD IS MARKED
BY BOLD

TABLE II
MEAN ERROR (%) AND ACCURACY (%) ON SMALLNORB. “-”

REPRESENTS NO RESULT RELEASED FROM THE ORIGINAL PAPER OR
RELATED PAPERS. THE BEST METHOD IS MARKED BY BOLD

we used the Adam optimizer [52] with the initial learning rate
of 0.01. The models were trained on one NAVIDIA 3090Ti
GPU with the batch size of 128. The capsule-type numbers
of the five blocks are set to [32, 32, 16, 16, NC ], where NC is
the category number.

1) Evaluation on MNIST and AffNIST: MINIST is a dataset
of 60K gray images with the size of 28 × 28. Table I lists the
performance comparisons of different methods. It can be seen
from Table I that our methods outperform the capsule related
works as well as CNN networks. Especially, our ResCaps
obtains the test error of 0.72% and test accuracy of 99.45%,
which are largely better than the other methods.

Besides, we probe into the robustness of our model to
affine transformations by using the AffNIST dataset, which
is generated by performing 32 random affine transformations
on each image of MNIST. Training on the MNIST training set
while testing on AffNIST test set containing 320 000 examples
are utilized to study the generalization performance. Since
AffNIST images are 40 × 40, we pad MNIST images for
training, i.e., randomly placing the digits on 40 × 40 black
backgrounds. Data rotation with 30◦ is additionally used for
data augmentation. In Table I, we observe that our models
surpass the capsule-related works and CNNs by a large margin.

2) Evaluation on SmallNORB: SmallNORB [16] consists of
gray-level stereo 96 × 96 images of five objects, each of which
is given at 18 different azimuths (0–340), nine elevations
and six lighting conditions. SmallNORB [16] provides 24 300
training and test set examples. Similar to [10], we standardize
the images and resize them to 48 × 48. We take 32 × 32
random crops for training and center crops at test time.
In Table II, our model achieves the test error of 0.91% and test
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TABLE III
MEAN ERROR (%) AND ACCURACY (%) ON CIFAR-10. “-” REPRESENTS

NO RESULT RELEASED FROM THE ORIGINAL PAPER OR RELATED
PAPERS. THE BEST METHOD IS MARKED BY BOLD

TABLE IV
MEAN ERRORS (%) OF RESCAPS VERSUS RESCAPS-2B.

THE BETTER METHOD IS MARKED BY BOLD

accuracy of 99.45%, which surpass those of the capsule-related
works significantly.

3) Evaluation on CIFAR-10/100: CIFAR-10 [17] and
CIFAR-100 [17] datasets contain images of size 32 × 32 with
ten classes and 100 classes, respectively. Each dataset con-
tains 50 000 training images and 10 000 testing images.
Table III illustrates the performance of different methods on
CIFAR-10 [17]. As shown in Table III, it can be seen that
our model achieves the lowest error and highest accuracy,
which shows our model surpasses the other methods. Espe-
cially, our ResCaps is superior to dynamic CapsNets [9] and
EM-Caps [10], which makes known that our model showcases
much progress with respect to the CapsNets family.

For CIFAR-100 [17], our ResCaps achieves the test error of
15.26%, which performs better than DensNet [63] (22.27%)
and CapsPro [64] (21.93%), i.e., one capsule-related work
based on the backbone of ResNet [43].

B. Ablation Analysis

In this section, we will conduct several experiments to ana-
lyze the role of each component in our proposed framework.

1) Our Residual Pose Routing Versus EM Routing: From
Tables I–III, under the condition of similar architectures,
our ResCaps-2B model consistently beats EM-Caps [10] on
MNIST, SmallNORB, and CIFAR-10, which demonstrates the
superiority of our routing. Besides, in terms of the test time per
image in MNIST [15], our ResCaps-2B (1.2 ms) runs faster
than EM-Caps (1.9 ms), revealing that our routing method is
much simpler than EM-Caps.

2) Deep Architecture: To study the effectiveness of our
deep architecture, in Table IV, we compare our ResCaps and
ResCaps-2B. From the performance comparisons on MNIST,
SmallNORB, and CIFAR-10/100, we find that ResCaps per-
forms worse than ResCaps-2B on MNIST and SmallNORB,

TABLE V
MEAN ERROR (%) OF DIFFERENT ROUTING LAYERS IN ONE BLOCK

ON SMALNORB. THE BETTER METHOD IS MARKED BY BOLD

TABLE VI
ACCURACY (%) OF DIFFERENT ROUTING LAYERS IN ONE BLOCK ON

MNIST AND SMALLNORB. “RESCAPS-2B-3L” EMPLOYS THREE
ResP LAYERS IN ONE BLOCK UNDER THE SAME SETTING OF

“RESCAPS-2B.” THE BETTER METHOD IS MARKED BY BOLD

TABLE VII
MEMORY, PARAMETERS, AND RUNNING TIME OF DIFFERENT MODELS ON

CIFAR-10. BESIDES, EVALUATION METRICS ARE LISTED HERE FOR
COMPARISON. THE BEST METHOD IS MARKED BY BOLD

TABLE VIII
MEAN ERRORS (%) OF RESCAPS VERSUS RCCAPS [49].

THE BETTER METHOD IS MARKED BY BOLD

which indicates that a shallow CapsNet architecture can
achieve promising performance for simple-structure gray-
level images. However, ResCaps outperforms ResCaps-2B on
AffNIST and CIFAR-10/100, which demonstrates our deep
architecture has better robustness to affine transformation on
AffNIST and better recognition ability for complex-structure
images, e.g., CIFAR-10/100.

3) Routing Layers: To study the performance of routing
layers in one block, we compare our ResCaps and one
modified versions, i.e., ResCaps-3L. Specifically, ResCaps
and ResCaps-3L consist of two and three ResP layer(s)4

in one block, respectively. From Table V, we find that our
ResCaps consisting of two ResP layers can achieve promising
performance, compared to ResCaps-3L that employs three
ResP layers in one block. Besides, similarly in Table VI, under
the setting of two blocks, two ResP layers perform better than
three ResP layers. It indicates that two routing layers have an
ability of exploring the part-whole relationships in a specific
scale of feature maps.

4) Memory, Running Time, and Parameter Comparison:
Table VII lists the memory, running time, and parameters of
different models. First, compared with the CNNs-based model,
i.e., ResNet-101, we achieve a lightweight model with fewer
parameters and faster running time by a large margin. As well,
we also surpass ResNet-101 in terms of error and accuracy.

4Considering the memory cost, we only has an ablation study for the three
routing layers in one block.
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TABLE IX
EVALUATION METRICS INCLUDING Fβ , MAE, AND Em VALUES OF DIFFERENT METHODS. TOP TWO METHODS ARE MARKED BY RED

AND BLUE, RESPECTIVELY. THE DESCRIPTIONS OF ICON-S-RPR AND TSPOANET-RPR CAN BE REFERRED TO THE TEXT

These observations demonstrate that our model gets superior
performance with lower computational complexity.

Second, compared to EM-Caps (23.70 GB GPU memory),
our ResCaps-2B that shares the similar architecture with
EM-Caps [10] needs (4.80 GB GPU memory) ∼20% GPU
memory. Besides, our ResCaps-2B is faster than EM-Caps in
terms of the running time per image under a similar archi-
tecture. However, our model is inferior to EM-Caps [10] in
terms of model parameters. The reason behind include: 1) our
model has several PrimaryCaps layers that will generate much
parameters, whereas only one PrimaryCaps layer in the entire
EM-Caps [10]; and 2) our ResP layer has many parameters
induced by two convolutions as well as transformation matri-
ces, whereas the main body (ConvCaps layer and ClassCaps
layer) of the EM-Caps [10] just learns transformation matrices.
Despite having more parameters, our model gets lower error
and higher accuracy, compared to EM-Caps [10].

5) ResCaps Versus RCCaps [49]: To explore the superiority
of the residual connection in our ResCaps, we compare
ResCaps with RCCaps [49] that adds the residual connection
between capsule layers, which can be seen in Table VIII.
For MNIST, SmallNORB, CIFAR-10, and CIFAR-100, our
ResCaps shows a large superiority over RCCaps [49], indi-
cating that the proposed ResCaps has a better classification
capacity. Besides, the comparison for AffNIST illustrates that
our ResCaps has more robust generalization than RCCaps [49].
These superiority of our ResCaps lies in that our residual
connection inside the capsule routing beats that between
capsule layers by RCCaps [49].

C. Two-Dimensional Image Saliency

In view of that the saliency prediction is a fundamental
research point in the field of computer vision, we choose
the task of salient object detection for the dense prediction
evaluation.

To design a deep salient object detection network, following
the architecture of [20], we replace the original capsule
routing of [20] with our identity mapping routing. We use the
cross-entropy loss function and IoU loss function to train the
network. The proposed network is implemented in Pytorch.
The training dataset of DUTS [65] is chosen as the training
dataset with horizontal flipping as the data augmentation

technique. The SGD optimizer [66] is used to train our model
with an initial learning rate of 5e-2.

1) Benchmark: We evaluate the performance of our model
on five benchmark datasets, details of which are described as
follows.

ECSSD [67] contains 1000 images collected from the
Internet. These images are with complicated structures.

HKU-IS [68] consists of 4447 images with multiple dis-
connected objects. It is divided into 3000 training images
and 1447 test images. We evaluate our methods and other
state-of-the-art methods on the test datasets.

PASCAL-S [69] includes 850 images describing various
scenes.

DUT-O [70] has 5168 images with different sizes and
complex structures.

2) Evaluation Criteria: We evaluate the performance of our
model as well as other state-of-the-art methods from both
visual and quantitative perspectives. The quantitative metrics
include precision recall (PR), F-measure, mean absolute error
(MAE), and E-measure. Given a continuous saliency map,
a binary mask B is achieved by thresholding. Precision is
defined as Precision = |B ∩ G|/|B|, and recall is defined as
Recall = |B ∩ G|/|G|, where G is the corresponding ground
truth. A PR curve is plotted under different thresholds.

F-measure is an overall performance indicator, which is
computed by

Fβ =

(
1 + γ 2

)
Precision × Recall

γ 2Precision + Recall
. (18)

As suggested in [80], γ 2
= 0.3.

MAE is defined as

MAE =
1

W × H

W∑
i=1

H∑
j=1

|S(i, j) − G(i, j)| (19)

where W and H are the width and height of the image,
respectively.

E-measure (Em) [81] combines local pixel values with
the image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

3) Performance Comparison With State-of-the-Arts:
Table IX illustrates the quantitative comparison on four
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TABLE X
EVALUATION METRICS INCLUDING Fβ , MAE, AND Em VALUES OF DIFFERENT METHODS. THE BEST METHOD IS MARKED BY BOLD

Fig. 6. Image saliency prediction results of some good methods. RPR can detect various-scale salient objects (top two rows), multiple salient objects (middle
two rows), and noisy-scene salient objects (bottom two rows), compared to the other methods.

benchmarks with ten state-of-the-art methods, including
ICON-S [20], TSPOANet [42], DCR [71], DPNet [72],
SelfReformer [73], JointCRF [75], ToHR [76], BMP [77],
LFR [78], and Amulet [79]. Specifically in Table IX, ICON-S
is one version of ICON [20] with Transformer as the back-
bone. ICON-S-RPR5 is implemented by replacing the dynamic
routing of ICON-S [20] with our residual pose routing using
two blocks. Also, TSPOANet-RPR is achieved by replacing
the two-stream capsule routing in TSPOANet [42] with our
residual pose routing using two blocks. First in Table IX,
ICON-S-RPR is better than the others for most of metrics,
which demonstrates the superiority of our residual pose routing
for the task of saliency detection. Second, under the same
setting, ICON-S-RPR and TSPOANet-RPR perform better
than ICON-S [20] and TSPOANet [42] with respect to most of
metrics, respectively. These observations indicate our residual
pose routing has a great power than the dynamic capsule
routing in ICON [20] and the two-stream capsule routing in
TSPOANet [42] for salient object detection.

To prove our claim of being simple yet effective model,
we list several pairs of models comparison in Table X,

5It is noted that ICON-S-RPR is re-trained for the optimal performance with
the same architecture. Saliency maps of ICON-S-RPR have been released on
https://github.com/liuyi1989/ResCaps.

including TSPOANet-RPR versus TSPOANet-EM,
TSPOANet-RPR versus TSPOANet, ICON-S-RPR versus
ICON-S, and ICON-V-RPR versus ICON-V. TSPOANet-RPR
and TSPOANet-EM replace the previous capsule routing in
TSPOANet [42] with our residual pose routing algorithm
and the EM routing algorithm [10], respectively. ICON-S
and ICON-V denote the ICON model with backbones of
Transformer and VGG16, respectively. ICON-S-RPR and
ICON-V-RPR are achieved by substituting our residual
pose routing for the original capsule routing in ICON-S and
ICON-V, respectively. As illustrated in Table X, ICON-S-RPR
performs better than ICON-S with a slight margin, which
is because the contribution of the capsule routing algorithm
to the performance is inferior to that of the powerful
backbone, i.e., swin Transformer. With regard to the ordinary
backbone of VGG16, our residual pose routing can achieve
a large-margin improvement on various benchmarks, such as
∼ 4% Em of ICON-V-RPR versus ICON-V on HKU-IS, ∼ 3%
Fβ of TSPOANet-RPR versus TSPOANet-EM on ECSSD
and DUT-O, and ∼ 2% Fβ and Em of TSPOANet-RPR
versus TSPOANet. Such performance margin is essentially
significant for the task of salient object detection in the
day. Based on the above discussions, our residual pose
routing algorithm gets a slight 0.1% improvement when using
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TABLE XI
EVALUATION RECONSTRUCTION QUALITY (‰). THE BEST METHOD IS MARKED BY BOLD

Fig. 7. Three-dimensional object generation. From top to bottom: input, point-caps [18], and our framework.

sophisticated backbones, e.g., swin Transformer. By contrast,
our model achieves a 2% ∼ 4% improvement on top of the
lightweight backbones, e.g., VGG16.

Fig. 6 shows detection results of some good methods.
Specifically, as shown in the first two rows of Fig. 6, RPR
can detect various-scale salient objects compared to the other
methods. As shown in the middle two rows of Fig. 6, RPR
can locate and segment multiple salient objects compared with
the other methods. As shown in the bottom two rows of
Fig. 6, RPR can segment the salient object while suppress-
ing noisy backgrounds, which is challenging for the other
methods. These improvements are credited with the part-whole
hierarchies learned by the proposed residual pose routing.

D. Three-Dimensional Object Understanding

The simplicity and effectiveness of our residual pose routing
make it possible to extend it for large-scale scene understand-
ing. In light of the increasing research trend of 3-D sensing for
robotics, autonomous driving, and augmented/mixed reality,
we choose 3-D object understanding based on the 3-D point
cloud data to evaluate our residual pose routing, including the
tasks of 3-D reconstruction and 3-D classification.

1) Three-Dimensional Reconstruction: To evaluate our
residual pose routing on 3-D reconstruction for point cloud
generation, we utilize one block of our ResCaps to substitute
for the dynamic capsule routing in Point-Caps [18] for 3-D

reconstruction. The input point clouds are aligned to a com-
mon reference frame and normalized for training. The Adam
optimizer [52] with an initial learning rate of 0.0001 and a
batch size of 2 is adopted for training.

We choose the standard Chamfer distance as the reconstruc-
tion performance evaluation metric on the ShapeNet Core v2
dataset [83]. For fair comparisons, we use the same training
and test splits in AtlasNet [82]. As illustrated in Table XI,
our residual pose routing beats the dynamic routing in Point-
Caps [82] significantly, specifically improving the Chamfer
Distance from 1.46 of Point-Caps [18] to 1.38. Besides,
as shown in Fig. 7, it can be seen that our residual pose
routing can better reconstruct the input point clouds than Point-
Caps [18] that adopts the dynamic routing. Concretely, our
residual pose routing reconstructs better object shapes and
inner details for better recognition.

2) Three-Dimensional Classification: To demonstrate the
efficiency of learned reconstruction representation, we evaluate
the classification accuracy by performing transfer learning
based on the learned latent features. Similar to [84], [85],
and [86], we train a linear SVM classifier regress the
shape class on ModelNet 40 [19] given the latent features.
As shown in Table XII, our accuracy is 89.9% surpassing
Point-Caps [18], which demonstrates our residual pose routing
can generalize better to new tasks like 3-D reconstruction and
classification.
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TABLE XII
ACCURACY OF CLASSIFICATION BY TRANSFER LEARNING ON

MODELNET 40 [19]. THE BEST METHOD IS
MARKED BY BOLD

VI. CONCLUSION

In this article, we have proposed a simple yet effective
residual pose routing algorithm into the CapsNet. Compared
with the original EM capsule routing algorithm [10], our
residual pose routing computed the capsule pose by an identity
mapping learning on the low-layer capsule pose, which helped
to avoid gradient vanishing. Different from EM routing [10]
that adopted fully connected complex hand-crafted computa-
tion, our residual pose routing conducted a sparsely learning
framework, which greatly reduced the routing parameters and
computation. Inspired by its simplicity and power, our residual
pose routing made a deep CapsNet architecture for better
image classification. To study the generalization for new tasks
of our residual pose routing, it was extended for 2-D image
saliency and 3-D reconstruction/classification.

Future work and limitation. The model presented in this
work has some limitations for future research. First, the
robustness for adversarial attacks is an increasing and demand-
ing research point. Therefore, the discussion for adversarial
attacks is demanding for our residual pose routing. Second,
currently, we evaluate our model for classification on 2-D
small-scale images. The generalization on large-scale datasets,
e.g., ImageNet [87] and COCO [88], will be a future research.
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